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Abstract. In this paper a new method for the modal analysis of slow frequency and power
oscillations - penetrating a whole electric power system - is presented.

By this Modal Power System Analysis Method there can not only be determined the damping
degree and the period duration of the dominant power system oscillation, but also the
location of those power plant units which are influencing the power system oscillations
essentially.

Due to this fact also aimed counter actions can be derived. For being able to apply the
Modal Power System Analysis Method also to large extended power systems an additional
Dynamic Power System Reduction Method has been developed. By this method only those
physical state variables inside of a considered subsystem are retained, which are
essential for the dominant power system oscillation.

As an application case the northern part of the UCPTE-network has been chosen, where a
strong power system oscillation had occured some years ago.

Keywords. Large electrical power systems, frequency and power oscillations, Modal Power
System Analysis, Modal Power System Reduction, detection of instable power plants,

HAC

stabilization measures.

INTRODUCTION

Between electrical part systems of large inter-
connected networks labile or even instable fre-
quency and power oscillations can occur, if the
relation between the installed power production
capacity and the existing power transmission capa-
city is not balanced sufficiently (Heilemann,
1983) .

Such lack of transmission capacity can be caused
e.g. by normal line revision or by accidental line
tripping after short circuits.

At present for the analysis of such phenomena the
dynamic power system simulation method is mostly
used, by which the stability or instability of a
power system can be illustrated directly, but by
which questions concerning the location and justi-
fication of damping equipments inside of a part
system can be answered only by the trial-and-error-
method (Fork, Clodius, Kaufhold, 1979).

This is due to the fact, that with the aid of
simulation technique a deep insight into the dyna-
mic behaviour of a part system is not possible; es-
pecially the question, which power plants are
influencing the occured oscillations essentially,
remains still unanswered.

Also analytical investigations conce.ning the
power and frequency oscillations by calculating the
resulting synchronizing and damping torque of every
generator inside the part system are mostly too
difficult because of the complexity of the real
network.

Here the method of Modal Power System Analysis
combined with Dynamic Power System Reduction offers
an elegant new way for the investigation of elect-
rical power systems.

With this method not only the dynamic input/-
output behaviour of a part system seen from its
coupling nodes can be analysed; but also the parti-
cular detection of those power plants is possible,
which influence frequency and power oscillations
essentially.

The information about the part system achieved
that way can then be used for coordinated counter-
measures, such as voltage controller justification
as shown by Vournas, Papadias (1984), or location
of power system stabilizers.

In real power systems the order of state vari-
ables however is normally too high for a direct
application of the modal analysis method, therefore
a stepwise performed dynamic reduction of the
considered part system - retaining only the few
essential state variables - has to be carried out
before.

In this paper both methods, the Dynamic Power Sy-
stem Reduction and the Modal Power System Analysis,
will be described.

CONSIDERED PART POWER SYSTEM

As practical application case the northern part
of the UCPTE-network with the configuration in 1979
will be considered. In Fig. 1a the topology of the
regarded part system, which is connected via two
coupling lines of 150 km length to the center of
the UCPTE-network, is shown. After a short circuit
at the station DO 3 the lines marked with —4#~ were
tripped off whereby the Subsystems I and II were
switched off and isolated from the remaining UCPTE
power system. Because of a power surplus in the
isolated two Subsystem I and II the frequency
increased to 50.25 Hz, whereas the frequency of the
UCPTE-network remained at 50 Hz because of its
size.

After the reconnection of the line Mo 3 - Do 3
the resynchronized power system became unstable,
because of the loss of transmission capacity.

Figure 1d,(curve a) shows the simulated power
oscillation on the line Mo 3 - Do 3. The oscilla-
tion period amounts to Tp = 2.93s, and the ampli-
tude of the undamped oscillation increases con-
tinuously. This dangerous situvation was stopped
after switching off the voltage controllers in some
power plants inside of the Subsystems I and II.
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Fig. 1:

For the investigation of the occurred power
system oscillation there could be based on the
nonlinear dynamic power system model being develo-
ped by the authors for the detailed simulation of
West European Power System (Welfonder, Schéfer,
Asal, 1987).

Inside of this power system model all feed-in and
feed-out nodes > 100 MW are regarded individually
by corresponding dynamic power plant and load
models. Also inside of the power station the power
plant units -~ feeding on different external
nodes - are considered seperately.

As the modsl analysis method is spplicable only
to linear systems the nonlinear dynamic model of
the considered part power system in Fig. 1a has
been linearized around its working point.

Subsequently the method of Dynamic Power System
Reduction - described in the following - has been
applied in two steps:

- at first only for the upper Subsystem I,s. Fig.1b
and ‘

- afterwards for the lower Subsystem II together
with the already dynamically reduced Subsystem I,
s. Fig. 1c.

A such stepwise performance turns out to be
useful for limiting the dimension of the matrix
equations and due to this also the computing time.
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DYNAMIC POWER SYSTEM REDUCTION

The dynamic reduction of a part power system is
possible, if the line flows to the neighbouring
part systems remain unchanged after reduction also
in the case of transient voltage fluctuations at
the coupling nodes.

If this basic requirement can be fulfilled with
sufficient accuracy in practice the nodes inside of
the part system can be reduced totally and the
dynamic state variables strongly.

Oynamic node reduction

The dynamic behaviour at a single node is caused
by the active and reactive power-deviations of the
producing power plant and/or the consuming load
network:

A @ =Gix 40 A(:Z (1a)

Therein the state variables X4 = (EP)
1

- of the power plant: XL



Ao, rotor angle
Aup, angular velocity
by, flux linkage, exiter winding
Agp flux linkage, d—axis damper winding
Ayq flux linkage, q—axis damper winding
XHD high pressure turbine
xe =| XND - | low pressure turbine
=Py Xy steam valve servo
Xsp steam accumulator
Xe field voitage
X¢ vco stabilization feedback
Xwo PSS—wash—out
xpssy | PSS—lead—lag—element 1
PSS—lead—lag~element 2 (1b)

Xpss2 ;

- and of the load network:

x¢\ frequency dependent power consumption
= X voitage dependent power consumption
¢ | voltage angle (1c)
1

can be computed at any time by the corresponding
state differential equation:

% = Ajcx +Bi- A(:)i (1d)

Considering the dynamic behaviour of all nodes, it
follows:
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The power flow between the different nodes can be
derived from the load flow equations.
After linearisation around the working point the
equations result:
- for the feed flows from the- power plants or to
the load networks (at the part system internal
nodes) to:
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- and for the feed flows from or to the other part
systems (at the external coupling nodes) to:
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By converting equations 3a to the internal vol-
tage vector a(u qa); and by replacing the converted

equation in equ. 3b the structure diagram, shown in
Fig. 2a, will be obtained. This structure diagram
already describes the active and reactive power
flows at the coupling nodes in dependence of the
coupling node voltages and in interaction with the

power plant and load behaviour described by equ. 2.

The further conversion of equations 2 and 3 leads
to the general structure diagram of Fig. 2b for the
description of the part system input/output be-
haviour:

P) =C -x +D -A(”)
A(g =& X TR See (42)
with the belonging state equation ]
x =4 -x+8-a() (4b)
- - —C

By this deduction all nodes inside of the part
system have been eliminated; however all internal
state variables, describing the dynamics of the
part system, remain active unreduced further on.

Dynamic State Reduction

From the great number of state variables being
active inside of the part system only a few are
influencing the dynamic behaviour at the coupling
nodes essentially. Therefore a dynamic state reduc-
tion seems possible and necessary too for the_
stepwise reduction of big part systems to be modal
analysed.

For this purpose the derived state equation (4)
- genersally describing the input/output behaviour
of the part system at the coupling nodes - has in
the first stage to be transformed by

5=¥.§ (5a)

in the modal state domain (Fdllinger, 1972):
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where the- eigenvalues of the part system are writ-
ten explicitely in the main diagonal of the trans-
formed system matrix, & s. Fig. 2c.

The advantage of this modal state description is
that the eigenvalues Ay =6y +JW ) are specifying the
swinging and damping behaviour of theeigenmovements
totally being active inside of the part system; so
e.g. a eigenvalue with &, = 0 characterizes an
undamped power system oscillation, details see
below.

In the second stage the eigenvariables are devi-
ded into dominant ones and non dominant ones. This
is done with the aid of the domincance measure from

Litz (1980):
Sy = IR foat LY
¥ Lk
which describes for each eigenvariable zy the
summed up influence from all coupling node voltages
a(u ), to 8ll tieline flows A(P Q). and this refer-
red to the eigenvalue 1.

In the following the evaluation of the dominant
eigenvariables is pointed out for the example of
Subsystem I, illustrated in Fig. 1a, which consists
unreduced of 105 state variables.

In Fig. 3 the eigenvalues with the 13 greatest
dominance measures are arrangead in decreasing
sequence of the dominance measures. .

As to be seen from this figure only the first 15
eigenvalues contain a considerable domincance
measure of > 1 % related to the highest value.
Therefore the regarding of the corresponding 15
eigenvariables would have been sufficient. In fact
20 eigenvariables z4 have been chosen as dominant,
because all part systems which have been considered
could be reduced down to this number independent of
the order of the unreduced part system.

Buj * Sk (6a)
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In the third stage the remaining eigenvariables
being identified as non-dominant are replaced by an

equivalent linear combinati

on of the dominant

eigenvariables z4. This leads to the reduced trans-
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can be done by means of an
additional "essential measure”
developed by Barth, Jaschek
(1985): b
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which describes
eigenvariables zy the

summed up influence from all
couolrmg node voltages

8Py to each state variable xp
refermg to the eigenvalue 3

for each



Using the essential measure the evaluation of the
main state variables can be carried out in the same
manner as the described determination of the domi-
nant eigenvariables.

When choosing the number of essential state va-
riables xo equal to the order of the dominant
gigenvariables d. the remaining essential part of
the transformation matrix Vde becomes quadratic and
can be inverted too.

In this case the unessential state variables can
be eleminated by reducing the output matrix C to

Co=GCo*Cu* Yau * Yoo N

Using Yge as reduced transformation matrix the
modal transformed and reduced part system can also
be retransformed in the physical model structure
again.

Stepwise Reduction of large Part Systems

The described method for "Dynamic Power System
Reduction” shall now be applied to the northern
part of the UCPTE-network. Therefore the Part

System is divided in three Subsystems I - III, as
marked in Fig. 1a.

In the first step Subsystem I is reduced:
- axternsal to the coupl1ng node CI,1 and
- internal from 105t order to 20tN arder,

s. Fig. 1b
In the second step Subsystem II and the reduced
Subsystem I are reduced together:
- external to the coupllng node CII 1 and
- internal from 117th again to 20th order,

s. Fig. 1c
In Fig. 1d there is illustrated the simulated aex-
change power flow between the nodes Mo 3 - Do 3
when reconnecting the two Subsystem I and II with
Subsystem III and due to this with the remaining
large UCPTE network.Therein the simulation has been
carried out for:

a) eigenvalues b) dominance measures
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a)the unreduced Subsystems I - III,
total order: = 262
only reduced Subsystem I, Subsystems II and
unreduced
total order: = 177
c)the reduced Subsystems I and II, Subsystem III
unreduced
total order:

b)the
III

n= 80

As it can be seen in Fig. 1d the correspondance
of the simulated exchange power flows is very well.
Period duration and damping degree of the in-
creasing power oscillation are retained nearly
equal, also after a reduction of the eigen-/and
state variables from 262 to 80, that means down to
30 %.

Number Eigenvalues/ % Dominance Measures
0 20 40

1,1 -0,33 + j- 3,69

2,2 ~4,63 £ j- 4,26

3,3 -4,50 £ j-11.30

4 -14,6

5,5 -7,67 £ j- 2.81

6 -34,30

7 -5,52

8 -3,83

9 -29,80

10,10' —-462 + j- 9,56

IAREN -3,63 + j- 7,61

12 -3,12

13,13 -0,70 + j- 0,004

Fig. 3: First thirteen eigenvalues of Subsystem I

with greatest dominance measures
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Figure 4: Eigenvalues, dominance measures and essential measures of the part system with waes ozza and

without =—4— damping actions



MODAL POWER SYSTEM ANALYSIS

The dynemic reduction of the considered northern
part of the UCPTE-network has been carried out in
such a way, that there has been retained:

- the coupling node C II,1 between Subsystem II and

III,

- the 20 most dominant eigenvariables and
- the 20 most essential state variables of the

reduced Subsystem I and II.

This reduced Part System has now - in connection
with the big UCPTE-networks - to be modal analysed.
The results aimed by this analysis are summarised
and white marked in Fig. 4:

For the first three dominant eigenvariables, to
be seen in Fig. 4b the belonging eigenvalues are
illustrated in Fig. 4a. In Fig. 4c and d there are
shown in addition for the most dominant instable-
eigenvalues the essential measures of the field
voltages xg as well as of the corresponding rotor
angles J'p.

As to be seen: .
- the oscillation - belonging to the first eigen-
value&1 - = (0.14 + j2.28) 1/s is instable,

increasing with a period durstion of

Tpy = (2772.28) s = 2.76 s.

Tgis part systaem oscillation is caused by the
coherent swinging of the three Subsystems I - III
against the big UCPTE-network, as illustrated in
Fig. Sb

the second ascillation - belonging to

2:2'2. = (~0.4 + j4.27) 1/s is already strongly

damped, decreasing with e period duration of

Tp2 = (27/4.27) s = 1.47 s.

Tgis oscillation is caused by the coherent swin-
ging of the two Subsystems I and II against
Subsystem III, as shown in Fig. S5c

the third oscillation - belonging to

%3'3. = (-1.08 + j6.7 ) 1/s8 is very strongly

damped, decreasing with a period duration of

Tp3 = (27/6.7 ) 1/s = 0.94 s,

Tgis third oscillation is related to the swinging

of all Subsystems against each other, as illu-

strated in Fig. 5d.

Therein Fig. 5 shows a mechanical analogon con-
sisting of three damped balls and three coupling
rods, representing the three Subsystems which are
operating against the big UCPTE-netwark.

a) four-balls three-rods swinging model with damping

UCPTE- Subsystem W Subsystem I Subsystem I
Network Sgm= 3000 MW  Scg = 2000 MW S = 3000 MW

n Moss 1

ass]

Domping I L——J

Damping I {=—=J
b) movement corresponding with eigenvalue 1,1'

. Eigenmovement 1 :

Damping T 1=

c) movemant corresponding with eigenvelue 2,2'

' Eigenmovement 2 °

d) movement corresponding with eigenvalue 3,3’

/j\

Eigenmovemnent 3

Fig.5 : Mechanicol anaiogon for the investigated power part system

STABILIZING COUNTER ACTIONS OERIVED 8Y
MODAL ANALYSIS

Considering Fig. 4c and d in detail one recogni-
zes, that the field voltage xg kj2 has the greatest
essential measure. R

Therefore at first the voltage controller gain of
this generator has been decreased strongly from
about 250 to 10 pu. However this counter action
alone has been not sufficient for stabilizing the
power system oscillation, see fFig. 6, countermea-
sure IV. Therefore in addition all voltage control-
ler gains in Subsystem II - having .also great
essential measures - have been decreased to 10 pu.
This results already to a stable eigenvalue beha-
viour, but with only rather small damping, see
Fig. 6, countermeasure II. Thereby the belanging
eigenvalues, dominance measures and essential
measures are shifted as shown black marked in
Fig. 4.

Decreasing the voltage controller gains of Subsy-
stem I instead of Subsystem II leads to no essen-
tial improvement, see the furtheron instable beha-
viour in Fig. 6, alternative countermeasure V. The
reason is, that the field voltages of the genera-
tors inside of Subsystem I have only small essen-
tial measures.

Inside of Subsystem I however the rotor angles

have significant essential measures. Therefore
an installation of stabilizers at the belonging
generators leads to a stable behaviour with a
already sufficient damping, see alternative coun-
termessure III in Fig. 6.

The corresponding movement of the eigenvalues,
dominance measures and especially of the essential
measures is illustrated hatched marked in Fig. 4
too.

1.9 1

o -2
-0.1 01 oA

-0.5 -0.3
without counter measures
I : original instoble part system

considered counter meaqsures

I : vco—gain decrease in Subsystem II

: pss—gain increase in Subsystem I

: veo—gain decrease only in power plant Ki 2
: vco—gain decrease in Subsystem I

: vco—gain decrease in Subsystem II and
pss—gain increase in Subsystem I

K HEB

Fig. 6: Movement of the instable eigenvalue 1
for different stabilization measures

.



wWhen applying both stabilizing countermeasures II
and III in addition i.e. decreasing the voltgge
controller gains in Subsystem II and installing
power system stabilizers in Subsystem I the con-
sidered part system will be stabilized very
strongly, see Fig. 6 countermeasure VI.

The efficiency of the stabilizing counter measure
actions II, III and VI is finaslly illustrated in
Fig. 7 by the simulated exchange power flow occur-
ring after the reconnection of the Subsystgm I and
II (and this in comparison to the original instable
behaviour without any counter action).

&P, /MW
600 |

300

-600 L 1 1 1

0 25 5.0 7.5

Fig. 7: Exchange pawer flow Mo3-Do3 with
and without stabilizing measures

CONCLUSION

In this paper there has been described on the one
hand a method for Dynamic Power System Reduction,
retaining only:

- the coupling nodes
- the most dominant eigenvariables and
- the essential physical state variables

of a considered subsystem. This method can also be

applied stepwise to several subsystems.

On the other hand a method for Modal Power System
Analysis has been presented, by which can be dster-
mined:

- the damping degrees and the period durations of
the dominant oscillation inside of a considered
power system,

- the locations of the power plant units and their
control loops influencing the dominant power
system oscillations essentially,

- aimed counter measures.

Both methods have been applied to the north part
of the UCPTE-network. Therein could be shown by
modal analysis that the considered Part System
could be stabilized - after reconnecting to the
UCPTE-power system - by decreasing the voltage
controller gains of the generators in Subsystem II
or/and by installing appropriate power system
stabilizer in Subsystem I.

10.0 t/s
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