Kosten sparendes Mess- und Auswerteverfahren

Berechnung der Durchflussmengen in einem Pumpspeicherwerk

Computation of water flow at a pumped storage hydroelectric power plant

SUMMARY

Due to the introduction of the payment for the use of Elbe water the problem of measuring the water volume used by the pumped storage hydroelectric power plant Geesthacht existed for the HEW. An innovatively and cost-saving solution was developed in co-operation by HEW and the University of Rostock. The developed analytic measuring and evaluation procedure uses already existing measuring signals. The necessary hard- and software is installed now inside of the power plant.

Mit der Anpassung der Bandbreite auf ±50 MW (Gesamtanlage) und dem Festlegen eines mittleren Oberwasserepsequivalentes von rd. 800 Mio. m³/a auf rd. 500 Mio. m³/a reduziert werden. Das Prinzip der optimierten Öffnung Wassermengen ist auf die Fahrlinie in der Betriebsart »hydraulischer Wasserkursschluss« (HWKS) zurückzuführen (Bild 2). Diese Betriebsart ermöglicht bei voller Lastbandbreite der Anlage einen quasi zeitlich uneingeschränkten Sekundärbetrieb.

Möglichkeiten zur Erfassung der Öffnungswassermenge

Bereits in der Vergangenheit wurden einige elektrische Größen an der Synchronmaschine bzw. am Netzanschluss genau erfasst. Anhand der Maschinenkennfelder kann daraus die Owaq-pflichtige Wassermenge berechnet werden.

Ausgehend von den Volllastdaten führt die einfache Linearisierung um den Arbeitspunkt zu einer zu ungenauen Abschätzung. Diese Vorgehensweise wurde bereits zu Beginn der Überlegungen verworfen. In zwei Versuchsgeräten wurde eine ortsfestveränderliche Ultraschall-Durchflussmengenmessung am mittleren Rohr auf halber Rohrlänge installiert. Beim Durchfahren der Leistung zwischen 0 und 100 % konnte so für die Betriebsart HWKS eine Kennlinie «Wassermenge als Funktion der elektrischen Leistung» (Bild 3) ermittelt werden.

In einem Modell, das an der Universität Rostock, Institut für Elektrische Energietechnik entwickelt wurde, konnten auch diese Einflüsse exakt nachgebildet und damit in der Owaq-pflichtigen Wassermenge berücksichtigt werden.

Erfassung der Owaq-pflichtigen Wassermenge durch iteratives Rechenverfahren
Für eine genaue Berechnung der stationären Wassermengenströme abhängig vom Betriebszustand (Betriebsart, Leistung, Wasserpflüssig- dergregen) musste zunächst ein Modell der Gesamtanlage unter Verwendung von zulässigen Vereinfachungen entwickelt werden. So wurde in der Einzelnen Rohrbauart sowie die Ringspeicher jeweils ein Reibungs widerstand, den Maschinen (elektrische Maschine, Turbo- pump) je eine Wirkungsgradkennlinie zugeordnet (Bild 4).

Im Pumpbetrieb ergibt sich dabei aus dem Schnittpunkt der Pumpenkennlinie mit der Druckhöhenverlustkennlinie des Gesamtrohres eine direkte Zusammenhang zwischen Speicherzustand, geodätische Höhe und Pumpenleistung. Die gesuchte Größe des Speicherzustandes kann für diese Betriebsart direkt aus der geodätischen Höhe oder aus der Pumpenleistung abgeleitet werden.

Für die anderen beiden Betriebsarten Turbinenbetrieb und HWKS ist zusätzlich die Stellung des Leitapparates eine unbekannte Größe. Hier müssen die geodätische Höhe und gleichzeitig die elektrische Leistung Aufschluss über den mo-
Bild 3. Gemessener Rohrdurchfluss abhängig von der elektrischen Leistung in der Betriebsart HWKS

Beim HWKS werden die Berechnung von Pumpbetrieb und Turbinenbetrieb miteinander kombiniert. Aufgrund der vielfältigen gegenseitigen Abhängigkeiten der einzelnen Größen untereinander und der daraus entstehenden Gleichungssysteme höherer Ordnung kann jedoch keine geschlossene Lösung gefunden werden. Aus diesem Grund ist die Anwendung eines weiteren Iterationsverfahrens erforderlich (Bild 6).

Die auf diese Art ermittelten Re chenergebnisse des gesamten Arbeitsbereichs beim hydraulischen Wasserkurvenfluss ergeben die 3-D-Kurve \(Q_R = f(H_{geo}, P_{el}) \) (Bild 5). \(Q_R \) ist dabei der je Maschinenatz von der Elbe ins Oberbeck geförderte Wassermengenstrom abhängig von der elektrischen Wirkleistung der Synchronmaschine \(P_{el} \) sowie der Wasserspiegelhöhe \(H_{geo} \). Die konstanten Flächen in Bild 5 bei den Grenzdurchflüssen stellen die

Programmierung und Implementierung der Messeinrichtung

Im Weiteren bestand die Aufgabe darin, eine Messeinrichtung zu entwerfen und aufzubauen, die den oben beschriebenen Algorithmus benutzt, um damit kontinuierlich den Rohrdurchfluss zu ermitteln und für weitere Bearbeitungen aufzuzeichnen. Dazu wurde eine rechnerbasierte Messanordnung aufgebaut, die überwiegend aus einem handelsüblichen PC, ausgerüstet mit Messkarte, und einer Koppelbaugruppe zur Signalpegelanpassung besteht. Folgende Eingangs sig nale werden erfasst:

- Höhe des Oberwassers (1 Analogsignal)
- Höhe des Unterwassers (1 Analogsignal)
- Generatorleistung (1 Analogsignal je Maschinensatz)
- Betriebsart (3 Digitalsignale je Maschinensatz).

Die Messwerte werden im Sekundentakt aufgenommen. Darüber angeordnet ist der Minutentakt, der jeweils einen Minuten satz in eine Messdatei (Tagesdatei) schreibt. An jedem Tagesende wird diese Messdatei mit insgesamt 1 440 Minuten satzdaten mit einer Tagesabrechnung versehen.

Zusammenfassung und Ausblick

Die Kostenbelastung durch die Abgabe für die Oberflächenwasserentnahme führt zu einem veränderten und verringerten Einsatz des Pumpschleusenwerks Geesthacht. Gleichzeitig muss die entnommene Wassermenge für Abrechnungszwecke genau erfasst werden.

SCHRIFTTUM

axel.hoelt@e-technik.uni-rostock.de
www.e-technik.uni-rostock.de/ee/