
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physics-based Discrete Modelling and Digital Control 
Design for Grid-Side Inverters for Renewable Energy 

 

 

 

Dissertation 

zur 

Erlangung des akademischen Grades 

Doktor-Ingenieur (Dr.-Ing.) 

der Fakultät für Informatik und Elektrotechnik 

der Universität Rostock 

 

 

vorgelegt von 

M.Sc. Michael Schütt 

aus Rostock 

 

Rostock, 24.06.2022  



 

II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Gutachter: 

 Prof. Dr.-Ing Hans-Günter Eckel 

 Institut für Elektrische Energietechnik, Universität Rostock 

2. Gutachter: 

 Prof. Dr.-Ing Sibylle Dieckerhoff 

 Institut für Energie- und Automatisierungstechnik, Technische Universität Berlin 

 

2. Gutachter: 

 Prof. Dr.-Ing. Sibylle Dieckerhoff 

 Institut für Energie- und Automatisierungstechnik, Technische Universität Berlin 

 

 

Datum der Einreichung:  24. Juni 2022 

Datum der Verteidigung:  10. November 2022 

 

Datum der Verteidigung:  24. November 2022 

  



 

III 

 

 

 

 

 
 

Acknowledgment 1 

 

This paper was made within the framework of the research project Netz-Stabil and financed 

by the European Social Fund (ESF/14-BM-A55-0015/16). This paper is part of the 

qualification program Promotion of Young Scientists in Excellent Research Associations - 

Excellence Research Programme of the State of Mecklenburg-Western Pomerania. 

I want to take this opportunity first to thank my academic mentors. Already during my 

studies, Professor Eckel captivated me with his outstanding lectures and won me over to 

power electronics. This trend continued when he became my boss and direct mentor during 

my time as a Ph.D. student. He always motivated me and also gave me the necessary 

freedom to enter and explore new academic paths. Special mention must be made here of 

my greatest role model in control engineering. Professor Lorenz forever tied me to control 

engineering during my time at WEMPEC with his unsurpassable lectures. I think I speak 

for all WEMPECers when I say that we miss you, and your legacy of physics-based control 

will live on in us - Rest in Peace! 

I would also like to thank my colleagues, and good friends from the Department of Power 

Electronics and Electrical Drives Till-Mathis Plötz, Cord Prignitz, Daniel Lexow, Florian 

Störmer, Christian Grünbaum, and Christian Neumann. I had a great time with you, and 

also, the stimulating discussions were always part of this work. I would also like to thank 

Gyanendra Kumar Sah and Vishwas Acharya Nayampalli. They already played a major role 

in the experimental setup as students and are now a vital extension of the team. 

I would also like to thank distant colleagues at WEMPEC for great memories and an 

irreplaceable treasure trove of experiences: Seth Avery, Tyler Brauhn, Bryan Dow, Brent 

Gagas, Tyler Graf, Dan Ludois, Timothy Slininger, Marc Petit, Boru Wang, Teng Wu. 

Last but probably most important, I would like to thank my family. Possibly my most 

outstanding role models − my parents − made all of this possible for me. They put academics 

in my cradle and spared no expense or effort in guiding me on the right path. In  the same 

sense, I thank my brother, who was always with me and supported me during all my stays 

abroad, and always visited me. However, my most significant support in life is my beloved 

better half, Alina. She is always there for me and fills me with love. She also gave me my 

precious son Colin, who brings so much joy into our lives.   



 

IV 

 

 

 

 

 
 
 

Abstract 2 

 

This work lays out the methodology of the analysis and consequent control design for the 

LC filter application on the example of a 5 MW wind turbine. The chapters progress 

sequentially through the different complexity steps from the continuous analysis to the 

discrete-space modeling to control algorithm design, integrated into a microcontroller-based 

hardware setup. The methods in each complexity step illustrate the process, starting with 

the identification of the control issue, through the control solutions, and ending with the 

evaluation using dynamic analysis.  

This paper presents a coherent method for direct discrete modeling of the LC plant. The 

developed models are the basis for the z-domain control design with active damping and 

observer structures used to compensate for the system's delays. The simulation results are 

evaluated via a low-voltage test bench at the University of Rostock. The experimental 

chapter presents the scaling process and the limits of such low-voltage test benches.  

The problem of active damping via capacitor current feedback is straightforward and benign 

in the continuous space. However, the discrete space presents many additional challenges 

such as delays, the inability to modulate continuous signals, and the warped z-domain space 

that alters eigenvalue placements. The proposed strategies tackle these challenges and 

exhibit similar dynamic properties compared to the continuous reference. 
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Zusammenfassung 3 

 

In dieser Arbeit wird die Methodik der Analyse und des anschließenden Regelungsentwurfs 

für die LC-Filteranwendung am Beispiel einer 5  MW Windturbine dargelegt. Die Kapitel 

führen nacheinander durch die verschiedenen Komplexitätsstufen von der kontinuierlichen 

Analyse über die Modellierung im diskreten Raum bis hin zum Entwurf des 

Regelalgorithmus, der in eine mikrocontrollerbasierte Hardware integriert ist. Die 

Methoden in jedem Komplexitätsschritt veranschaulichen den Prozess, beginnend mit der 

Identifizierung des Regelungsproblems, über die Regelungslösungen und endend mit  der 

Bewertung mittels dynamischer Analyse.  

In diesem Beitrag wird eine kohärente Methode zur direkten diskreten Modellierung der 

LC-Anlage vorgestellt. Die entwickelten Modelle bilden die Grundlage für den 

Regelungsentwurf im Z-Bereich mit aktiver Dämpfung und Beobachterstrukturen, die zur 

Kompensation der Systemverzögerungen eingesetzt werden. Die Simulationsergebnisse 

werden mit Hilfe eines Niederspannungsprüfstandes an der Universität Rostock 

ausgewertet. Das experimentelle Kapitel stellt den Skalierungsprozess und die Grenzen 

solcher Niederspannungsprüfstände dar.  

Das Problem der aktiven Dämpfung durch Kondensatorstromrückführung ist im 

kontinuierlichen Raum einfach und unproblematisch. Der diskrete Raum stellt jedoch viele 

zusätzliche Herausforderungen dar, wie z. B. Verzögerungen, die Unfähigkeit, 

kontinuierliche Signale zu modulieren, und der verzerrte z-Bereich, der die 

Eigenwertplatzierungen verändert. Die vorgeschlagenen Strategien meistern diese 

Herausforderungen und weisen ähnliche dynamische Eigenschaften auf wie die 

kontinuierliche Referenz. 
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1. Introduction  

In March 2014, a fire started on the converter platform BorWin 1 of the wind farm Bard 

Offshore 1. Consequently, the operators shut down the 400 MW North Sea offshore wind 

farm for months due to technical problems. The transmission system operator TenneT, the 

wind farm operator Ocean Breeze, and the converter manufacturer ABB commissioned the 

independent third-party Task Force to investigate. This platform failure led to a loss of 

income of up to a three-digit million euro sum. Further, this fiasco raised the question of 

whether this was a problem in the grid connection or the transmission technology and left 

the rest of the industry worrying. Officials informed the press that harmonics caused 

fluctuation in the grid. These fluctuations caused an overload of the substation of BorWin 1. 

[1, 2] 

In [3], TenneT provides an analysis of the harmonics of BorWin 1. TenneT focuses in [3] 

on the impedance resonances of small islanded offshore grids dominated by cables, 

converters, and auxiliary systems. The installed lines in the case of BorWin 1 have high 

capacitance per km. Further, the overall system is very low resistive. This combination 

leaves powerful resonances within the whole system. The converter hardware and control 

design had to include these resonant issues to secure stable operation. Unfortunately, this 

opportunity was missed within the planning phase of BorWin 1 / Bard Offshore. 

 

Figure 1.1: Possible resonances within the structure of an offshore wind farm due to various 

LC components. 
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Damping 

However, resonant-impedance issues are not just a subject of converters connected to island 

grids. Likewise, onshore wind turbines or photovoltaic plants face similar problems when 

implementing LC-filters. LC-filters or LCL-filters are second-order low pass filters that 

achieve grid-code compliant harmonics with smaller passive components and thus cheaper 

installation costs compared to the first-order L-filter counterpart, with the inductor 

dominating the overall costs for such systems.  

A comprehensive approach to overcoming the associated resonant problem is the usage of 

damping resistors within the converter output filter [4, 5]. This solution is state of the art 

for wind turbine converters. A viable scenario and explanation of the BorWin 1 incident are 

connected to overheating of these damping resistors, causing a chain of destruction. Small 

voltage excitation of the resonances of the offshore-grid could have induced strong currents 

through the installed damping resistors causing this overheating issue. In general, such 

damping resistors have to be separately cooled in some cases, increasing the overall effort. 

Moreover, the stress on these resistors is not known for all operational cases, which leaves 

the potential for severe destructive cases such as the described scenario. The associated 

grid-impedances that influence the resonance are unknown. Hence the dimensioning 

becomes precarious. Finally, the dissipated energy in these resistors also reflects a loss of 

income. 

Active Damping 

Another promising approach to tackle the LC-resonance issue can be found via control 

design. Substantial research went into controlling algorithms to overcome the LC-resonance 

problem [4–18]. These techniques can be divided into two main categories: State Feedback-

based (SFb-based) [6, 8–11, 13–16, 18] and Forward-Path-based (FwP-based) methods [7, 

12, 17]. The term Active Damping (AD) encompasses all of these methods. Table A.3 

(appendix) provides a systematic overview of all these AD papers indicating the type of 

technique, the utilized state information, and limits of the respective strategies. A summary 

of the gaps in these references is given in the following subchapter. 

The state feedback-based methods utilize information on the inverter current, the grid 

current, the capacitor current, capacitor voltage, or a combination to manipulate the system's 

overall behavior. The state information is used to decouple the resonance or to implement a 

virtual damping coefficient. When decoupling the capacitor voltage, as shown in 

Figure 1.2.d, the plant seen from the converter becomes a first-order L-filter for the inverter 
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current control (loop S1). Decoupling the capacitor voltage is mathematically the same as a 

short over the capacitor. Therefore, the capacitor itself, the grid-impedance, and the grid-

voltage no longer affect the current control.  

Figure 1.2.e, in contrast, uses an active state-feedback of the capacitor current and 

introduces a virtual resistance similar to a damping resistor. However, this virtual 

impedance is only modulated in vinv, and thus its influence is only present for loop S1 and 

consequently is dynamically not the same as a damping resistor – which would produce a 

voltage drop in both loops S1 and S2.  

Both state feedback-based active damping approaches need accurate state information (vC 

or iinv) but are intrinsically not very sensitive to grid impedance. 

The forward-path-based solutions either implement a notch-filter (Figure 1.2.c) within the 

controller or introduce a resonant controller (Figure 1.2.f) tuned to the LCL-resonance. 

These forward-path-based algorithms require accurate estimation of the resonance and, thus, 

of the grid impedance. Further, the notch-filter-based solution only prevents the converter 

from exciting the resonance but disables the converter to dampen the resonance once 

excited. In other words, a notch-filter-based solution provides no input impedance for the 

 

Figure 1.2: Overview of AD algorithms: a) LCL-topology, b) block-diagram of LCL, 

c) Notch-Filter based AD, d) Voltage-Decoupling based AD, e) virtual impedance damping, 

f) resonant controller based AD. 
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grid at the selected resonant frequency. Thus, the converter will show a strong current 

reaction when the grid excites at that frequency. On the other hand, the resonant-controller 

solution will provide a very strong impedance at the selected resonant frequency. However, 

when the grid-impedance-based resonance changes, the controller offers its high damping 

impedance at the wrong frequency, failing to dampen the critical oscillations. 

The Gap in Literature – Active Damping 

As previously discussed, active damping methods need accurate state information or precise 

information about the load. In the case of an LC-resonance, this information is most crucial 

at relatively high frequencies. Thus, continuous space control solutions cannot perform 

adequately on existing systems. A computational delay between sampling and voltage 

update is inevitable on today's most common Digital Signal Processor-based (DSP-based) 

controller boards. A typical example of 3 kHz wind turbine converters is an LC-filter with 

a break frequency of around 700 Hz. The computational delay, in this case, can yield a phase 

of 84 degrees. The approaches of Figure 1.2.d and Figure 1.2.e would not dampen in this 

case due to the incorrect phase. 

Table A.3 in the appendix chapter categorizes the mentioned active damping references and 

analyzes the remaining gaps in the respective research. In summary, the cited papers fail to 

provide a coherent method to shape the input impedance of the inverter to dampen 

resonances in varying grid-impedance situations. Most procedures do not include the 

discrete nature of a digital PWM-based system and its inherent delay properties. The main 

focus is solely put on the command tracking attributes for almost all of the studied active 

damping approaches or, in other words, on the excitation part of the inverter – overlooking 

the actual damping of the system completely. In contrast, the primary goal should be the 

input impedance and the robustness regarding the grid-impedance. 

The Gap in Literature – PWM 

Pulse-Width Modulation-based (PWM-based) converters cannot produce continuous 

voltage nor discrete step-shaped voltages. Instead, block-shaped voltages are modulated to 

match the desired voltage in an average manner. This raises the question regarding the 

dynamic representation of the PWM. A discrete step-shaped voltage is a ZOH. As shown in 

[19], if sampling and updating are done synchronously with the PWM, the PWM can be 

modeled as a Zero-Order Hold (ZOH), as well (for inductive loads). 

Another common approach is the modeling of the PWM as a delay with the length of half a 

sampling period [20].  
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Figure 1.3 shows a simple simulation to illustrate the dynamic properties of the PWM. In 

Figure 1.3 a-e, a digital PWM-based system (ZOH for the A/D-sampling and the PWM 

itself) tries to negate a reference signal. The output is integrated to evaluate the difference 

between the two paths on average (a – PWM vs. ZOH, b – PWM vs. continuous, c – PWM 

with phase correction vs. continuous dynamically), d – PWM vs. delayed continuous, e – 

PWM vs. delayed continuous dynamically).  

Figure 1.3 shows that the mentioned delay representation of the PWM falsely represents the 

system dynamics. On average, the PWM signal does not introduce a phase (Figure 1.3.a) 

that would be present for that proposed delay approach. When comparing a continuous 

signal with a discrete PWM representation, i.e., during voltage decoupling, the PWM can 

only match the continuous signal on average. Delaying the continuous signal by half a 

 

Figure 1.3: Comparison of PWM modelling techniques for different events: (a) discrete PWM 

represented by a zero-order hold (ZOH), (b) difference of discrete PWM to continuous signal, 

(c) average-based discrete PWM compared to continuous signal at dynamic event, (d)  delay 

representation of PWM with sinusoidal signal compared to continuous case, (e)  delay 

representation of PWM with sinusoidal signal at dynamic event compared to continuous case, 

(f) vector average of sinusoidal signal. 
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sampling period results in an average match for the case of a perfect sinusoidal signal  

(Figure 1.3.c) and thus might lead to the erroneous assumption to model the PWM as a 

delay. Figure 1.3.a shows in isolation that the PWM itself does not introduce any phase to 

the discretized signal on average. 

Figure 1.3.f illustrates the moving vector of the continuous signal between samples (starting 

at t = 0 in red to t = T in brown). The average of this moving vector is between the sampled 

values of the continuous signal (indicated in pink). Consequently, the PWM input should 

be set to the vector average (pink) rather than the sample instant values (red or brown) to 

decouple the continuous moving vector (on average). The vector average is obtained for a 

sinusoidal signal by increasing the angle by T/2, as shown in Figure 1.3.e. 

A dynamic event illustrates the difference between modeling the PWM as a delay of half a 

sampling period (Figure 1.3.d) or just as a zero-order hold and introducing average signal 

math for decoupling techniques (Figure 1.3.e). The continuous moving vector leads the 

sampled vector between each sampling point and thus creating the illusion of a delay caused 

by the PWM. However, the erroneous delay model of the PWM still leads to the correct 

phase correction for the decoupling of continuous signals – such as the decoupling of the 

grid voltage of grid-connected inverters. On the other hand, this phase correction is also 

applied very commonly to the discrete signals of the current control. This false applied 

phase correction can lead to dynamic problems. 
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The Gap in Literature – Discrete Modelling 

To overcome the limitation of the continuous space, approximation models such as Tustin 

or Forward Euler are commonly used to achieve discrete system models [21]. These 

approximation models are accurate only to a certain extent. Especially in high frequencies 

relative to the sampling frequency, as is the case for most grid resonances, these 

approximation models fail to represent the system attributes accurately, as shown in the 

simulation example of Figure 1.4.  

The Gap in Literature – Summary and Goals 

To handle the LC-problem effectively, a cohesive direct discrete model-based solution has 

to be found. Further, a coherent solution for delay compensation is essential. Comparing 

state feedback-based and forward-path-based solutions, the state feedback-based solutions 

provide a more practical method due to their robustness regarding the grid impedance 

information. 

 

Figure 1.4: Comparison of the discrete voltage source system dynamics: Up-Left: Reference-

model in continuous time with zero-order hold (“discrete system”), Up-Right: Discrete plant 

model with the Tustin approximation; Bottom-Left: Grid voltage and inverter voltage time plot 

for both models; Bottom-Right: Resulting sampled grid currents for the two models. 
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Outline 

This work will outline a consistent analytical approach to achieving the previously set goals. 

Some parts of the presented material were already published in [22–25]. Further, this paper 

consecutively presents the different complexity levels and the related control problems from 

a continuous design to an implementation-space design on a DSP for the LC-filter problem. 

A 5 MW wind turbine with a 3 kHz converter is used as an example. All parameters are 

provided in Table A.1 (Appendix). A down-scaled version of the said converter is designed 

and presented as an experimental setup. 

The introduction outlines the LC resonance problem and highlights its significance in the 

example of the BorWin 1 incident. This chapter further summarizes the current state of 

literature and outlines an analysis regarding the literature gaps as a fundamental basis of 

this work. 

Chapter 2 presents the general control design and evaluation methods used in this paper . 

This chapter briefly describes pole-zero placement techniques and the matrices used to 

evaluate command tracking capability, disturbance rejection, and robustness.  This chapter 

further emphasizes the importance of designing the disturbance rejection attributes such that 

the converter resembles a dynamically well-behaved impedance seen from the grid. The 

described state-of-the-art of current control solutions and the general concepts of the 

methods and metrics are closely oriented toward the references [19, 26]. The related 

publications to this work [22, 23, 25] reveal additional insights on problems of the state-of-

the-art solutions and are showcased in chapter 2, as well. These issues mainly concern 

harmonic impedance resonant effects caused by forward-path-based solutions. The chapter 

offers possible solutions both in continuous and discrete space. 

Chapter 3 outlines the definition of the control problem, continuous modeling, and control 

design. The methods shown in section 2 will be the basis for this design. This chapter offers 

an analysis unique to this work for the LC- and LCL-control problem. These analyses 

encompass the influence of virtual damping on dynamic stiffness, command tracking with 

block diagrams, pole-zero plots, and frequency response function plots. Further, the 

difference between different decoupling techniques is described. Finally, this chapter shows 

the design of capacitor voltage and current observers for the LC- and LCL-plant yielding 

sensorless capacitor current information without deriving the capacitor voltage. These 

concepts are the reference for the discrete design of the following chapters.  

Chapter 4 elaborates on chapter 3 by converting the ideas of chapter 3 into the discrete 

domain. This chapter highlights the issues that are unique to the z-domain. First, the discrete 
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modeling approach of the University of Rostock [24] is discussed and compared to the 

solution of the Aalto-University [11]. The reduced state-vector model is also compared to 

the actual system with frequency response function analysis. The chapter follows up with 

the control design, the observer structure in the discrete domain, and dynamic robustness 

analysis. 

Chapter 5 shows the transition from the discrete domain into the implementation space. This 

chapter consequently introduces the PWM, the switches, and the system's delays. The 

harmonic problems due to the PWM are discussed, and possible solutions from the literature 

are discussed. Further, the unique issue of the misalignment of the voltage sampling for 

conventional sampling is discussed. Finally, the discrete-state observer structure for delay 

compensation is discussed in detail. The final control structure and dynamic robustness 

analysis in simulations are addressed at the end of the chapter. 

Chapter 6 illustrates the experimental setup and measurement methods. This chapter will 

lay out the process for scaling the original converter to a low-voltage experimental setup. 

This part of the thesis will outline issues unique to the low-voltage design. The closing 

experimental dynamic analysis is discussed at the end. 
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2. Methods and Metrics 

This chapter will lay out the methods and matrices used to design and evaluate control 

systems. These methods can be applied for continuous and discrete systems, but they change 

in complexity.  

The design space, implementation space, and evaluation processes are not interchangeable. 

The design space offers more degrees of freedom than can be evaluated in the existing 

system. For instance, a pole-zero map can be designed accurately in the design space but 

cannot be measured. Actual measurements can fit results to a presumptive model yielding a 

reverse-engineered pole-zero map. However, this hypothetical model is a crucial source of 

error. This chapter, consequently, is split into the design space methods and the respective 

implementation space methods. Further, the last section will lay out the different complexity 

steps of this thesis's control problem. 

2.1. Design Space 

The design process of any system demands key metrics for evaluation. In this work, these 

critical attributes for control design are reference tracking capability, disturbance rejection, 

and robustness. Design choices often only evaluate reference tracking capability and 

robustness [7, 19, 26–36]. The papers [22, 23], which have been published in connection 

with this work, show severe dynamic disturbance response problems that can consequently 

get neglected, as discussed in chapter 2.1.4.  

The primary metrics for reference tracking and disturbance rejections are pole-zero maps 

on the one side [37–40] and Frequency Response Functions (FRFs) [41–44] on the other 

side. As discussed previously, the pole-zero map is a tool of the design space. Frequency 

response functions, in contrast, can be used in both the design and implementation space.  

While robustness analysis works well for both methods, subtle differences will be more 

apparent in frequency response function plots. This paper uses overlaid pole-zero maps and 

frequency response function plots to evaluate robustness. 
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2.1.1. Reference Tracking 

Figure 2.1.a illustrates a continuous voltage source connected via a simple R/L load to the 

grid. Figure 2.1.c shows the state block diagram of this system. Equation (2.1), Figure 2.1.e, 

and Figure 2.1.d represent the relation between the input voltage and the output current as 

a transfer function, frequency response function plot, and pole-zero map, respectively. Both 

metrics reveal the Eigenvalue (EV) at – R/L.  

 I( )s

V( )s
 = 

1

Ls + R
 = 

1

L




s + 

R

L

 (2.1) 

The pole-zero map reveals the attributes of each pole of a given system. The vector between 

the origin and the pole represents damping with the cosine of the angle of the vector, i.e., 

the real part and speed characteristics via the magnitude. Further, instability would occur 

for EVs on the right side of the imaginary axis. In this case, one eigenvalue of the plant is 

perfectly damped.  

The frequency response function plot shows the same attributes. One break frequency (or 

eigenvalue) with a smooth transition in both angle and magnitude is present. Neither the 

frequency response function nor the pole-zero map seems to provide additional information 

over the other. 

 

Figure 2.1: Continuous voltage source connected to the grid via R/L load. a) circuit diagram, 

b) step response, c) state block diagram, d) pole-zero map, and e) I(s)/V(s) frequency response 

function magnitude (top) and phase (bottom). 
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Command Tracking 

In this step, the control will be designed for reference tracking attributes. In the following 

steps, this work presents why this is not always the optimal approach. However, designing 

for tracking is the most common control design strategy [7, 12, 26, 45–50]. The transfer 

function of the system I(s)/I(s)
*

 will be used throughout the paper for reference tracking 

evaluation. This frequency response function is referred to as Command Tracking (CT) [19, 

23–26, 42, 43, 51]. 

 I( )s

I( )s
 *  = 

Kp.

Ls + Kp + R
 ;  EV: p1 = − 

R. + Kp

L
 (2.2) 

 
for s ≙ j  and  = 0: 







I( ) j

I( )  j
 *  = 

 Kp.

 Kp + R
 ≠ 1 (2.3) 

Figure 2.2.a shows the block diagram for the controlled system. Equation (2.2), 

Figure 2.2.d, and Figure 2.2.c show the command tracking for a pure Proportional 

controller (P-controller) as a transfer function, frequency response function plot, and pole-

zero map, respectively. Both the frequency response function and the pole-zero map show 

a perfectly damped system. The break frequency is proportional to the gain of the P-

controller. However, the frequency response function plot further reveals an offset error 

 

Figure 2.2: Continuous current control design: a) state block diagram, b) step response, c) pole-

zero map, and d) command tracking plot − magnitude (top) and phase (bottom). 
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within the controller's bandwidth. Equation (2.3) shows that the natural state-feedback of 

the system − the resistance − causes this offset. Figure 2.2.b (teal) shows the influence of 

Decoupling State Feedback (DSFb – see also Figure 2.2.a – teal). 

 
I( )s

I( )s
 *  = 

Kp ∙ s + Ki

L ∙ s2 + ( )Kp + R  ∙ s + Ki
 ;  EVs: p1/2 = − 

R. + Kp

2L
 ± 







R. + Kp

2L

 2
 − 

Ki

L
 (2.4) 

 
Im( )EVs  = 0 for:  

Ki

L
 ≤ 







R. + Kp

2L

 2

 (2.5) 

 
for s ≙ j  and  = 0: 







I( ) j

I( )  j
 *  = 

Ki

Ki
 = 1 (2.6) 

Equation (2.4), Figure 2.2.d, and Figure 2.2.c further show the command tracking for 

Proportional-Integral controllers (PI-controller) as a transfer function, frequency response 

function plot, and pole-zero map, respectively. The two eigenvalues can be seen in both the 

frequency response function equation and the pole-zero map. However, the second 

eigenvalue is not apparent in the frequency response function plot. Equation (2.5) shows the 

restriction for the gains. The eigenvalues move off the real axis with decreasing Kp or 

increasing Ki, and oscillations occur. Figure 2.2.b, however, shows that even within the 

restrictions of (2.5), overshoots and oscillatory behavior can occur. This is because two 

eigenvalues in close proximity represent a resonance.  

The frequency response function plot in Figure 2.2.b, Figure 2.2.d illustrates the impact of 

separating these two eigenvalues on the dynamic behavior in the frequency domain and time 

domain, respectively. The effect of the separation and the extent to which the dynamic 

performance meets the requirements is difficult to evaluate on the pole-zero map. The 

frequency response function plots offer a more straightforward evaluation process in 

comparison. In contrast to the P-controller, the PI-controller does not cause any offset error, 

as shown in (2.6). 

2.1.2. Disturbance Rejection 

Dynamic Stiffness 

In this step, the control will be evaluated regarding disturbance rejection. The inverse of the 

disturbance transfer function of the system VG(s)/I(s) will be used throughout the paper for 

disturbance rejection evaluation. This frequency response function is referred to as Dynamic 
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Stiffness (DS) [19, 26, 52–57] (the name of this metric originates from mechanical systems 

and machine controls [58–60]). The unit of the dynamic stiffness of the current controller 

is . The dynamic stiffness represents the output impedance of the controlled system seen 

from the grid. Consequently, for the dynamic stiffness analysis, the grid current is defined 

in the direction of the grid voltage. Dynamically well-behaved output impedances ensure 

stable parallel operation of multiple systems. Control designs aim to maximize this metric 

at the important frequencies with reasonable resulting energy demand. 

The papers [61] and [62] explain the concept of passivity in the context of converter control. 

Further historical references of the concept can be found regarding the general theory in 

[63–65] and specifically for controls in [66, 67] and more recently in [68]. In essence, a 

component is passive if it absorbs energy from disturbances at any given frequency. 

Consequently, if the real portion of the dynamic stiffness (another denotation for dynamic 

stiffness is harmonic impedance [61]) was positive for all frequencies, the controlled system 

can be considered passive. Similarly, if the angle of the dynamic stiffness (harmonic 

impedance) was between − 90 and 90 degrees, the system is passive. The concept of 

passivity further implies that the overall system is always passive in cases where all 

participants are passive. To summarize, any system with multiple participants will be stable 

and well-damped if all participants are designed to be passive (passivity is a sufficient 

metric but it is not necessary to ensure this behavior). Moreover, this also implies all 

participants provide active damping attributes for the overall system for any given 

resonance. 

 VG( )s

I( )s
 = Ls + Kp + R;  EV:  = − 

R. + Kp

L
 (2.7) 

 

for s ≙ j  and  = 0:  






VG( ) j

I( ) j
 = Kp + R ≠ ∞ (2.8) 

Equation (2.7), Figure 2.3.c, and Figure 2.2.a show the dynamic stiffness for a P-controller 

as a transfer function, frequency response function plot, and pole-zero map, respectively. 

The dynamic stiffness experiences the same characteristical break frequency as observed 

for the command tracking. The controlled system resembles a harmonic output impedance 

of a resistor with a value of Kp + R and the series inductor L. Therefore, low- and mid-

frequency voltage disturbances only get rejected by a factor of ( )Kp + R −1. Figure 2.3.b 

illustrates the consequent offset error for DC disturbances (see also (2.8)). The phase of the 

harmonic impedance seen from the grid is always between 90° and −  90°. Thus, the system 

is passive.  
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Equation (2.9), Figure 2.3.c, and Figure 2.3.a show the dynamic stiffness for a PI-controller 

as a transfer function, an overlaid frequency response function plot, and an overlaid pole-

zero map, respectively. The PI-controller resembles an impedance containing a resistor with 

a value of Kp + R, a series capacitor with a value of Ki
−1, and a series inductor with a value 

of L. 

 VG( )s

I( )s
 = Ls + ( )Kp + R  + Ki/s;    EVs: 1 ≈ − 

R. + Kp

L
,  2 ≈ − 

Ki

 R + Kp 
 (2.9) 

 
for s ≙ j  and  = 0:







VG( ) j

I( ) j
 = ∞ (2.10) 

The controller with two close eigenvalues shows the strongest disturbance rejection at low- 

to mid-frequencies but slightly lower dynamic stiffness at high frequencies (see also 

Figure 2.3.c). Both PI-controllers show passive behavior, though. Two very close 

eigenvalues represent a resonance. The controller with separated eigenvalues demonstrates 

a slower phase transition, which yields lower resonant properties. Equation (2.10) indicates 

that the dynamic stiffness at very low frequencies becomes infinite. Thus, PI-controllers 

decouple DC disturbances entirely (see also Figure 2.3.b). 

 

 

 

Figure 2.3: Continuous current control design: a) pole-zero map of the dynamic stiffness, 

b) load step response, c) dynamic stiffness plot − magnitude (top) and phase (bottom). 
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2.1.3. Discrete-Design 

The publications in [19, 45] and the paper [23], which is connected to this work, provide a 

systematic approach for direct discrete modeling. Equation (2.11) shows the discrete model 

of the L-filter topology. The integrator of the PI-structure in the discrete domain can be 

expressed by using the Tustin, the Forward Euler, or the time-weighted accumulation 

approximation. However, all of these structures yield a total gain K, a pole at 1, and a zero 

at  as shown in (2.12). The equations (2.12) and (2.13) illustrate the controlled system's 

open-loop and closed-loop transfer functions, respectively. The eigenvalues are located, as 

shown in (2.14). In this case, increasing  or decreasing K separates the eigenvalues.  

Figure 2.4.c and Figure 2.4.a show the overlaid dynamic stiffness for a PI-controller as a 

frequency response function plot and pole-zero map. The attributes of the discrete control 

design are very similar to the continuous structure. Since sampling warps the discrete 

frequency domain into a circle, the magnitude never falls off to zero, and the phase 

approaches −180° at the Nyquist frequency in contrast to the −90° in the continuous case. 

 

 

 

Figure 2.4: Discrete current control design: a) state block diagram, b) step response, c) pole-

zero map, and d) command tracking plot − magnitude (top) and phase (bottom). 
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Figure 2.5 similarly illustrates the disturbance rejection of the discrete control system. The 

results are almost identical to the continuous design. 

 
I( )z

V( )z
 = 

 ( )1 − e−T/  z−1

 R( )1 − e−T/z−1
 = 

 A1 z−1

 1 − B1z−1 (2.11) 

 



I( )z

I( )z
 *

open loop
 = K 

1 −  z−1

1 − z−1  
 ( )1 − e−T/ z−1

 R( )1 − e−T/z−1
  (2.12) 

 I( )z

I( )z
*  = K 

 ( )z −  A1

z2 + z( )A1K − 1 − B1  + B1 − KA1
 (2.13) 

 
EVs: p1/2 = − 

A1K − 1 − B1

2
 ± 







A1K − 1 − B1

2

2

 − B1 + A1K (2.14) 

2.1.4. Design for Dynamic Stiffness or Command Tracking 

Current control both for machine and grid applications is commonly done in the 

synchronous dq-reference-frame [26, 69–76]. The advantages of this reference frame are 

the clear distinction between the reactive and active portion of the current and that the 

 

Figure 2.5: Discrete current control design: a) pole-zero map of the dynamic stiffness, b) load 

step response, c) dynamic stiffness plot − magnitude (top) and phase (bottom). 
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commands operate in a DC- instead of an AC-steady-state-system. Thus, no phase nor 

magnitude error will be present for a PI-controlled system during a steady state. The paper 

[26] further shows that the usage of this reference frame introduces a cross-coupling 

between the d- and q-current. The work of [26] also presents two techniques to overcome 

this issue. 

On the one hand, the cross-coupling can be decoupled as feedback (see Figure 2.6.a). On 

the other hand, the cross-coupling can be canceled through the forward path (see 

Figure 2.6.b). The results in [26] suggest that the forward path solution shows superior 

dynamic attributes with far less parameter sensitivity regarding the inductance value.  

The paper [22], which was published in connection with this work, illustrates the stronger 

command tracking robustness regarding L for the forward path solution, as well (compare 

Figure 2.7.a and Figure 2.7.b). However, that paper [22] provided evidence that the forward 

path solution can cause resonance issues at high synchronous speed. This resonant issue is 

observable primarily in the dynamic stiffness but not in the command tracking shown in 

Figure 2.7 – compare c) and d). 

The same affiliated research groups of [26] extended their work in [19] towards a discrete 

control design with a forward path solution for the cross-coupling of the d- and q-current 

(see Figure 2.6.d). Analog to the continuous case, the forward path approach provides high 

robustness for command tracking. The paper [23], which was published in connection with 

 

Figure 2.6: Decoupling techniques of the dq-current cross-coupling: a) continuous decoupling 

cross-coupling via active state feedback (DCCSFb) [22], b) continuous pole-cancelation via 

complex zero in the forward path [22], c) discrete decoupling cross-coupling (DCCSFb) w/ 

MID – Manipulated Input Decoupling [24] (connected to this work), d) discrete pole-

cancelation via complex zero in the forward path [19]. The non-complex version of this figure 

is displayed in the appendix in Figure 9.4. 
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this work, presents a discrete decoupling technique via feedback (see Figure 2.6.c). The 

work in [23] further reveals the same resonant problems for the discrete forward path 

solution at high synchronous speed/slow sampling/slow switching. 

This example highlights the importance of designing for both dynamic stiffness and 

command tracking. For stability and passivity, dynamic stiffness seems to be the most 

crucial metric for large intertwined systems. 

2.2. Implementation Space 

Implementation Design 

The final complexity step in design in this paper is referred to as the implementation space. 

This complexity step has to be in the discrete domain due to the implementation on a 

DSP/FPGA setup. Moreover, this complexity step allows only real-life applicable design 

 

Figure 2.7: Comparison of dynamic performance of two different decoupling techniques of the 

dq-current cross-coupling for different L estimation errors and synchronous speeds  (low = 

50 Hz, high = 500 Hz). Top: Feed forward path-based [24]/[19], Bottom: State feedback-based 

[25]/[22], Left: Command tracking (no estimation error at high speed overlaps with no 

estimation error at low speed), Right: Dynamic stiffness (estimation error affects D.S. very little  

– not included) .  
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tools. The model at this complexity contains further effects such as delays, dead times, the 

actual PWM, switching times, noise, and overload issues. 

Control Design and Evaluation 

The design and evaluation tools of the implementation space are limited compared to the 

design space. As mentioned previously, the pole-zero map cannot be measured. Dynamic 

measurements can be used to fit results to a model yielding a reverse-engineered pole-zero 

map. Through false assumptions, this approach can lead to wrong findings, though.  

Dynamic frequency response function plots are obtainable in the design and implementation 

space, such as command tracking and dynamic stiffness. A common approach to extracting 

these dynamic plots is made via test signals. The test signals excite the system. The relation 

between the excitement and the system's response provides the information needed for a 

frequency response estimation. [77] 

A fast and widely implemented method is the excitement with signals that contain 

components with a range of frequencies – such as white noise or chirp signals. The 

frequency analysis of the input and output signal directly provides the frequency response 

function plot. [77] 

Another approach is the so-called single-sine test. In this test, a single sinewave is used to 

obtain the magnitude and phase information of the frequency response function for one 

specific frequency. Consequently, only multiple single-sine wave tests provide a range of 

frequency information for a full frequency response estimation. 

The test signals are applied to the reference to obtain a command tracking plot. Figure 2.8 

shows the conceptual estimation process of the frequency response. 

 

Figure 2.8: Frequency response estimation process for command tracking. 
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For a dynamic stiffness test, on the other hand, a dynamic disturbance is needed that contains 

a wide range of frequencies, as shown in Figure 2.9.a. In many applications, achieving such 

disturbance excitation is very challenging. In some cases, a very long observed time frame 

ensures enough detected frequency components through random disturbance similar to 

white noise, thus yielding appropriate frequency response estimation. In other cases, this 

might never occur. 

 

Virtual Disturbance 

Another way to achieve dynamic disturbances over a wide range of frequencies is the usage 

of the control itself. Figure 2.9.b. shows the implementation of a virtual disturbance for the 

first order R/L system. Adding a virtual disturbance to the manipulated input has very 

similar effects on the system compared to an actual disturbance yielding accurate frequency 

response estimation, as well. 

 

Figure 2.9: Frequency response estimation process or dynamic stiffness: a)  with a dynamic 

disturbance and b) with a virtual disturbance. 
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2.3. Complexity Steps of the Control Design 

This work performs different design methods for the presented LCL problem at 

consecutively increasing complexity levels.  

Starting with the continuous design helps to achieve a general approach and provides crucial 

insight into the main issues of the control problem. The discrete design's subsequent 

conversion will highlight problems in the discrete world (close to implementation space). 

The design models the inverter as a discrete voltage source at this complexity step . The 

implementation space depicts the inverter with actual switches introducing delays, the 

PWM, and dead times. 

Chapter 1 discusses the opportunity to decouple the capacitor voltage, consequently 

transforming the problem into a simple first-order R/L system – see also Figure 1.2.d. The 

following chapter presents the complete current control design and remaining control issues 

of the LC structure. 
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3. Continuous Design 

This chapter defines the continuous control problem of this work, lays out the control 

design, and closes with dynamic analyses. Although the implementation space is in the 

discrete domain, everything but the converter itself still operates in the continuous-time 

frame. Thus, analyzing the system in the continuous environment offers crucial insights into 

the control problem. The concepts of this first design and analysis are the basis of the 

consecutive design steps at the different complexity levels. 

The definition of the control problem contains the assumptions and approximations used as 

a first model. Further, this step discusses the dynamic attributes of the plant and 

demonstrates the options of control topologies. 

 

Figure 3.1: Three-phase two-level inverter connected to the grid via an LC-filter. a) circuit 

diagram – blue depicts the measurements for the LC-topology (inverter current iinv and capacitor 

voltage vC), b) first-order equivalent model (continuous voltage source representation), and 

c) state block diagram of the first-order model. For clarity resistances are neglected here.. 
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The control design and dynamic analysis utilize the methods of chapter 2 to achieve a 

dynamically well-behaved system. The 5 MW 3 kHz wind turbine converter of Table A.1 

(Appendix) is used for all plots in this chapter. 

3.1. Control Problem 

3.1.1. Analysis 

Figure 3.1 and Figure 3.2 depict the control problem – a three-phase inverter connected to 

the grid via a second-order LC or LCL filter, respectively. Figure 3.1.b shows the first-order 

approximation of the inverter as a continuous voltage source. Equations (3.1), (3.2), and 

Figure 3.1.c present the transfer function between inverter voltage and grid current , and 

between grid current and grid voltage (harmonic impedance) for the LC filter configuration. 

The resonance occurs at Res = 2fRes = (Lf  + LG) / (Lf LG 
Cf) and the anti-resonance at 

ar = 2far = 1 / (Lf Cf) for the LC-filter. The resonance frequency of such systems is 

usually designed to be well below the switching frequency and above the bandwidth to avoid 

strong excitation by the inverter. [78] 

 IG( )s

Vinv( )s
 = 

1

Lf LG 
Cf ∙ s

  
1

 s2 + Res  
2  (3.1) 

 

Figure 3.2:Three-phase two-level inverter connected to the grid via an LCL-filter – blue depicts 

the measurements for the LCL-topology (inverter current iinv,abc and PCC-voltage vG,abc). For 

clarity resistances are neglected here. 
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 IG( )s

VG( )s
 = 

1

LG  
∙ s

 
s2 + ar  

2

 s2 + Res  
2  (3.2) 

Figure 3.3 (red) illustrates the frequency behavior of the impedance seen from the grid. The 

impedance of the plant drops to the combined series resistance of the plant at the resonance 

frequency. This impedance is orders of magnitude lower than the grid impedance.  

As the impedance of the plant becomes virtually zero at the resonance frequency, a 

conventional PI-controller is not capable of forcing the plant to track at this frequency 

without any decoupling. However, as shown in Figure 3.3 (blue), the P-portion of a current 

controller (Kp) provides similar attributes to series resistance, thus decreasing the resonance 

effect. However, increasing the Kp further does not yield significantly improved resonance 

damping. Higher Kp implies an increased bandwidth of the controller. Reduced damping is 

observed once the bandwidth exceeds the resonance (see Figure 3.4). 

The well-damped harmonic impedance seen in Figure 3.3 and Figure 3.4 is only valid 

without voltage decoupling. However, voltage decoupling is essential for any current 
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Figure 3.3: Dynamic stiffness of the LCL problem. red: Impedance of LCL-structure seen 

from the grid w/o control, blue: Impedance of LCL-structure seen from the grid w/ PI-current 

control (LC/LCL-topology – w/o voltage decoupling).  
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controller since it defines the plant until the decoupled voltage vastly increases robustness 

regarding the grid impedance. Without this decoupling, the current controller needs accurate 

information about the entire grid impedance, making the current control concept very 

challenging to implement. In most applications, such grid information is not feasible to 

attain. Further, the grid impedance changes over time. Therefore, the control has to be robust 

regarding the grid state.  

As lined out in chapter 1, the notch filter and the resonant control approach have major 

setbacks within parameter sensitivity regarding the grid impedance—however, the 

decoupling of the capacitor voltage and implementation of a virtual resistance display 

promising attributes. If the capacitor voltage was entirely decoupled, the controlled plant – 

seen from the converter – would shrink to a first-order problem without any resonance. The 

implementation of a virtual resistance, on the other hand, would limit the resonance effect 

seen from the grid.  

Both strategies rely on state information that might not be available for every application. 

Further, only a continuous control environment can correctly represent a virtual resistance 
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Figure 3.4: Impedance seen from the grid for the LC-filter topology for different tuning of the 

current PI-controller. Blue: 2500 Hz bandwidth, Red: 250 Hz bandwidth (LC/LCL-topology – 

w/o voltage decoupling). 
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and fully decouple a continuous disturbance. Tackling these issues is the key objective of 

the upcoming chapters.  

There is a wide variety of possible topologies regarding filter and measurement setups. This 

chapter discusses two very common topologies. The LC-topology is the LC-filter with 

measurements for the inverter current iinv and the capacitor voltage vC (see Figure 3.1). The 

LCL-topology is the LCL-filter setup with sensors for the inverter current iinv and the Point 

of Common Coupling-voltage vG (PCC-voltage) – see Figure 3.2. 
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3.1.2. Decoupling State Feedback vs. Disturbance Input Decoupling 

The previous chapters introduced various decoupling techniques. These decoupling 

techniques can be broadly separated into decoupling state feedback (DSFb – Decoupling 

State Feedback and DCCSFb – Decoupling Cross-Coupling State Feedback) and 

Disturbance Input Decoupling (DID). This subchapter analyzes the system's sensitivity 

regarding these two forms of decoupling. 

Figure 3.5.a shows the implementation of the capacitor voltage decoupling and a state 

feedback decoupling of the filter resistance of an LC-resonance. Figure 3.5.c illustrates the 

 

Figure 3.5: Influence and comparison of disturbance input decoupling and decoupling state 

feedback for the LC-topology. a) state block diagram of the implementation, b) state block 

diagram of the flawed implementation, c) frequency response estimation for different 

combinations of the decoupling techniques, d) comparison of the influence of signal errors on 

the effectiveness of the decoupling techniques. 
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frequency response function plot of the inverter current with respect to the inverter voltage 

with different combinations of these decoupling techniques. Figure 3.5.d shows the 

frequency response function's influence due to flawed signals for the decoupling, as 

indicated above in the same figure (Figure 3.5.b).  

The disturbance input decoupling changes the controlled plant dramatically. In this case, 

the disturbance input decoupling changes the inverter transfer function from a second-order 

to a first-order system. Consequently, the frequency response function alters strongly with 

flawed disturbance input decoupling, shown in Figure 3.5.d − orange. The resonance and 

antiresonance (singularity with very high impedance) are not fully decoupled anymore. 

On the other hand, the decoupling state feedback does not change the order of the system. 

It merely leaves some of the PT1-behavior of the system instead of a pure integration 

system.  

Some might argue that the system becomes unstable when the decoupling state feedback is 

bigger than the natural state feedback as it yields positive feedback. This instability would 

be true without control, but once control is implemented, the positive feedback can still be 

beneficial and will not cause instability. The remaining state feedback merely shifts the 

intended eigenvalues by a tiny margin. 

The type of information needed for each decoupling technique offers another perspective 

and further physical insight into the shown issues. A disturbance usually cannot be 

observed. In the LC-topology, the capacitor voltage can be observed as a state (instead of a 

disturbance) only with complete state information (see Figure 4.3 – comparison between 

full-state and reduced-state models), including the grid current (actual disturbance). Thus, 

observers often can only yield estimated (and therefore flawed) disturbance information. 

In many cases, the disturbance might not even be an energy state at all. The consequent 

volatility and unpredictability of the disturbance combined with its strong influence on the 

controlled system make disturbance input decoupling a very sensitive technique in 

comparison. 
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3.2. Control Design 

This subchapter outlines the control design for the LC- and the LCL-topology with active 

damping approaches, as discussed in chapter 1. 

3.2.1. LC-Topology 

Since the LC-topology (see Figure 3.1) encompasses the state information of the capacitor 

voltage, the decoupling of the capacitor voltage is part of the current control in any case. 

Figure 3.6 illustrates the two discussed options of control techniques for the LC-topology. 

As described previously, the decoupling of the capacitor voltage breaks the plant – seen 

from the converter –  down to a first-order L-load. Using (2.4), the eigenvalues of the plant 

are placed at fRes / 3 and fRes / 30 (250 Hz and 25 Hz). As described in subchapter 2.1.4, the 

current control of grid-side inverters utilizes the dq-reference frame. The consequent 

decoupling of the cross-coupling between the d- and q-current is integrated into the control, 

as well (Figure 3.6). 

 IG( )s

VC( )s
 = 

0   
2
C  ∙ s

 s2 + 0   
2 (3.3) 

 IG( )s

IC( )s
 = 

0   
2

 s2 + 0   
2 = 

IG( )s

Iinv( )s
 (3.4) 

Figure 3.8 and (3.6) provide the transfer function with implemented virtual impedance. 

Figure 3.9 depicts the pole-zero map for the grid impedance and command tracking for the 

approach with and without a virtual resistor Rvir. 

 
Figure 3.6: Control techniques with active damping for the LC-topology. a) voltage 

decoupling, b) voltage decoupling and virtual resistor implementation in series with capacitor. 

A separate dq-representation including the load can be found in Figure 9.3 in the appendix 

chapter.  
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Iinv( )s  ∙ Ls = ( )Iinv( )s  

*
 − Iinv( )s  ∙ GPI( )s  − Iinv( )s  ∙  

Rvir 








1 − 
IG( )s

Iinv( )s
  (3.5) 

 Iinv( )s

Iinv( )s  
*  = 

Kp  ∙ s + Ki

Lf  ∙ s2
 + 









Kp + Rvir − 
Rvir ∙ 0   

2

 s2 + 0   
2   ∙  s + Ki 

  
(3.6) 

Figure 3.7 illustrates the overlaid command tracking plot for the inverter current and the 

overlaid dynamic stiffness plot (impedance seen from the grid) for varying virtual resistors. 

Due to the well-decoupled capacitor voltage, command tracking of the inverter current is 

not an issue. Without any virtual resistance, well-behaved tracking is achieved. On the 

contrary, Figure 3.7, Figure 3.8, Figure 3.9, and (3.6) – compared to (2.4) – show that 

increased virtual resistance yields antiresonant behavior above the controller's bandwidth. 

This antiresonance does not constitute any problems to the system, though. Further, the 

  
  

  
  

  
  

  
<

 V
G

(
)s

I G
(

)s
 i

n
 d

e
g

  
  

  
  

  
  

  
  

  
  

 


 V

G
(

)s

I G
(

)s
 

in
 

 

   
  

  
  

  
  

 <
 I i

n
v
(

)s

I i
n

v
(

)s
  

*
 i

n
 d

e
g

  
  

  
  

  
  

  
  

  
 


 I i

n
v
(

)s

I i
n

v
(

)s
  

*
 

in
 A

/A
 

 

 
 Frequency in Hz 

         ─ w/o Rvir         ─ w/ small Rvir  

         ─ w/ large Rvir 

   Frequency in Hz 
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Figure 3.7: Dynamic analysis of the current controller for the LC-topology with varying virtual 

resistance: Left: dynamic stiffness, Right: command tracking (note – the system is modelled 

with losses, thus the phase does not fully drop to –180 deg). 
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pole-zero map reveals oscillatory poles. These poles are close to the antiresonance and thus 

do not influence the dynamic performance. 

Equation (3.7) illustrates the impedance seen from the grid. This impedance contains the 

grid impedance and the filter capacitance – an LC-resonance. The dynamic stiffness in 

Figure 3.7 consequently reflects this LC as harmonic impedance.  

 VG( )s

IG( )s
 = LG  ∙ s + 

1

Cf ∙ s
 − 

Rvir

 Lf Cf ∙ s2 + Cf ( )Kp + Rvir  ∙ s + Cf Ki
 (3.7) 

The virtual impedance implementation suppresses the resonance effect very effectively (see 

Figure 3.7 – left in blue). The equation (3.7) shows that the virtual resistance adds a series 

impedance to the grid-side LC-resonance. The series impedance added by the control via 

 

Figure 3.8: Block diagram of the active damping approach via virtual resistance Rvir with the 

assumption of decoupled capacitor voltage and implemented decoupling of the dq-current cross-

coupling. The grid-side resonant LC-structure couples back via Rvir yielding an antiresonance 

for the current command tracking at 0.  
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Figure 3.9: Pole-zero map of the current controller for the LC-topology with varying virtual 

resistance; Left: command tracking, Right: dynamic stiffness (impedance seen from grid). 
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the virtual resistance achieves damping at the resonance frequency when the term Lf Cf ∙ s2 

dominates in the denominator for this frequency. However, increasing Rvir further also 

increases the term Cf (Kp + Rvir) ∙ s, which in return can degrade the damping performance. 

Figure 3.7 shows that the plant is not passive, roughly between 1 Hz and 100 Hz. The 

impedance is substantial in that region, which suggests this does not influence other 

systems. No example was found where this threatens negative cross-coupling effects. 

However, this phase drop is the trade-off of the active damping approach via virtual 

resistance based on capacitor current feedback. Filtering out these low-frequency 

components for the active damping could solve the problem. 

The evaluation of this effect should be part of future research. 

Observer 

The active damping approach using capacitor current feedback – as presented in  [6, 8, 10, 

11, 13] – needs two different current information, the inverter current for the control and 

the capacitor current for the active damping. The second current measurement, however, 

poses a problem in many applications. Thus, an algorithm that avoids this additional 

measurement is very advantageous. A common approach for obtaining further state 

information is the implementation of an observer [79–83]. 

Figure 3.10 depicts a first-order Luenberger-style observer for the capacitor voltage. The 

observer controller's output estimates the disturbance – the grid current – and consequently 

can be used to estimate the capacitor current. Figure 3.11 shows the overlaid plot of the 

dynamic stiffness and command tracking comparing the performance using the observer′s 

capacitor current information to actual measurement implementation with and without 

parameter estimation error. These plots suggest that the sensor replacement technique via a 

Luenberger-style observer offers a very robust alternative. Figure 3.11 further shows that 

 

Figure 3.10: Luenberger-style observer of the capacitor voltage model of the LC-filter. The 

observer estimates the grid-current and the capacitor current. 
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the bandwidth of the observer should be placed well above the resonant frequency, which 

seems intuitive.  

3.2.2. LCL-Topology 

The LCL-topology (see Figure 3.2) utilized the inverter current and voltage information 

after the LCL structure at the PCC. In contrast to the LC-topology, the plant seen from the 

inverter includes the resonance and antiresonance of the LCL structure, similar to the 

impedance seen from the grid (see Figure 3.4 − red). 

However, until the antiresonance and resonance frequency, the plant can be approximated 

as a first-order L-filter with the inductance value of Lf1 + Lf2 (see Figure 3.3). Consequently, 

the controller can be tuned again using (2.4) with the combined inductance. 
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 Frequency in Hz Frequency in Hz 

        ─ w/ 10  kHz vc-Observer with 15% parameter estimation error                    ─  w/ measured ic  

        ─ w/ 1  kHz vc-Observer with 0% parameter estimation error 

Figure 3.11: Dynamic analysis of the current controller for the LC-topology w/ and w/o 

vc-observer for capacitor current estimation with large virtual resistance: Left: dynamic 

stiffness, Right: command tracking (note – the system is modelled with losses, thus the phase 

does not fully drop to –180 deg). 
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Using the same control algorithms as shown in Figure 3.6, except for a different L parameter 

and VG instead of VC for the decoupling, frequency response function plots are derived and 

depicted in Figure 3.12 for varying virtual resistance. 

The harmonic impedance seen from the grid (dynamic stiffness) shows very similar 

attributes comparing the LC- (Figure 3.7) and the LCL-topology (Figure 3.12). In contrast 

to the LC-topology, the command tracking of the LCL-topology reveals the need for further 

active damping regarding the resonance. The virtual resistance achieves very efficient 

damping. 
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                       ─ w/o Rvir            ─  w/ small Rvir                        ─ w/o Rvir            ─  w/ small Rvir 

                       ─ w/ large Rvir                                                   ─ w/ large Rvir 

Figure 3.12: Dynamic analysis of the current controller for the LCL-topology with varying 

virtual resistance: Left: dynamic stiffness, Right: command tracking (note – the system is 

modelled with losses). 
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Observer 

Similar to the LC-topology, a sensor replacement technique via observer would greatly 

benefit many applications' active damping schemes. Figure 3.13 shows a cascaded 
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 Frequency in Hz Frequency in Hz 

  ─ w/ 10  kHz cascaded Observer with 15% parameter estimation error                      ─  w/ measured ic  

  ─ w/ 1  kHz cascaded -Observer with 0% parameter estimation error 

Figure 3.14: Dynamic analysis of the current controller for the LCL-topology w/ and w/o the 

cascaded Luenenberger-style observer for capacitor current estimation with large virtual 

resistance: Left: dynamic stiffness, Right: command tracking (note – the system is modelled 

with losses). 

 

Figure 3.13: Cascaded Luenberger-style observer structure of inverter current and capacitor 

voltage model of the LC-filter for the LCL-topology. The observers estimate the grid-current, 

the capacitor voltage, and the capacitor current. 
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Luenenberger-style observer structure. This cascade uses the inverter current observer to 

estimate the capacitor voltage. Similar to the LC-topology, the capacitor voltage observer 

estimates the capacitor current. 

Figure 3.14 depicts the frequency response function plots comparing simulation results to 

different observer setups. These dynamic plots reveal similar attributes for the LC-topology 

compared to the LCL-topology. Both topologies benefit greatly from high bandwidth 

observers but are relatively robust regarding the filter parameters. Further, none of the 

presented methods need any information regarding the grid impedance. 

3.3. Continuous Design Conclusion 

The dynamic analysis shows that the LC-topology and the LCL-topology need active 

damping to achieve a well-behaved harmonic impedance seen from the grid. Using the 

virtual resistance in series with the capacitor provides proper damping (see the grid scenario 

in Figure 3.15). However, the virtual resistance drops the phase at lower frequencies 

resulting in non-passive behavior. Though the author did not find critical examples for this 

setup, the consequent phase drop must be considered a trade-off. Filtering out the low-

frequency components in the active damping could potentially solve this issue. Future work 

will investigate this effect. 
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vG,(t) = Vmax,n [ ]cos(G ∙ t  ) + 0.03 ∙ cos(
 Res,LCL ∙ t  ) + 0.03 ∙ cos( Res,LC ∙ t )  

 

Figure 3.15: Time domain plot of -axis for grid-scenario with 3 % harmonic content at LC 

and LCL resonant frequency for the current controller of the LC-topology with observer-based 

virtual resistance. Disturbance was implemented as shown in equation above. 
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The observer-based sensor replacement techniques (Figure 3.10, Figure 3.13) perform very 

effectively in the dynamic analysis. The observer is very robust regarding the filter 

parameters and needs no further information on the grid impedance. However, the 

performance of the observers deteriorates rapidly at low bandwidth. The bandwidth should 

exceed the resonance to be effective at the resonant frequency. 

Figure 3.15 showcases the efficiency of the described active damping algorithm that uses 

observer-based state feedback in a time-domain plot for the LC-topology. 

A first-order assumption is the basis of the tuning and design for the command tracking of 

the LCL-topology. In contrast, the LC-topology can be controlled like a first-order due to 

the capacitor voltage decoupling and thus inherently shows superior command tracking 

performance. The developed LCL-observer provides capacitor voltage information, as well. 

However, this information is only estimated and not observed and thus should not be used 

for disturbance input decoupling. Disturbance input decoupling with estimated information 

is similar to the use of flawed DID and will yield erratic attributes as illustrated in 

chapter 3.1.2. 

The LC-topology and the LCL-topology utilize the capacitor voltage information within 

their observer structures to estimate the capacitor current. However, in the case of the LC-

topology, this information is directly available through measurement. Consequently, the 

observer structure of the LC-topology is more robust.  

This chapter aimed to evaluate the problems of the continuous domain of the control 

problem. Though the actual control operates in a discrete environment, the resonant problem 

itself occurs in continuous time. Thus, the insights from this chapter build a sound basis for 

the discrete control approach. 

The next chapter focuses on discrete-time control design. 
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4. Discrete Design 

This chapter focuses on the implementation of the concepts of chapter 3 in the discrete 

domain. The publications [23–25], which were published in connection with this work, 

highlight the issues that are unique to the z-domain. Identifying the correct direct-discrete 

models is crucial to obtaining effective decoupling and the consequent manipulation of the 

system's eigenvalues. Both presented control algorithms for the LC- and the LCL-topology 

base on a first-order L filter assumption after voltage decoupling. Thus, the current control 

design can be held out as conceptually presented in chapters 2.1.3 and 2.1.4. Equation (2.14) 

shows the eigenvalue placement, and Figure 2.6 illustrates the control topology.  

Within the framework of this work, the University of Rostock published a discrete modeling 

approach and the consequent current control in [24] for the LC-topology. For simplicity, 

this concept is called the Rostock approach and will be laid out in the following. Another 

research group associated with the Aalto-University introduced a different direct discrete 

modeling approach in [11] in called the Aalto approach from here on (see also [21, 84–95]). 

First, this chapter will describe both approaches and compare them. The two models perform 

very similarly – arguably with slight advantages for the Rostock approach for the LC-

topology. The Rostock approach will be used onwards for the control and observer design.  

All parameters used for the plots and examples are shown in Table A.1 (Appendix). 

4.1. Control Problem 

This subchapter presents the derivation of the direct discrete model and identifies the 

problems that are unique to the discrete domain. This chapter models the inverter as a 

discrete voltage source. With this assumption, the manipulated input can be modeled as a 

zero-order-hold, as shown in Figure 4.2.a.  

Aalto Approach 

The Aalto approach [11] presents the derivation of a direct discrete model for the full state-

vector x = [iinv, vC, iG]T as shown in (4.1) – (4.3) in the dq-frame.  
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The phrase full state-vector describes in this work the state vector as just shown. It engulfs 

all states – both grid and filter currents, and the capacitor voltage. Consequently, more 

parameters (LG) and state information (iG) are involved in this state-space description (full 

LCL-topology): 

 

 
dx

dt
 = A x + Binv vinv + Bg vG = 







− jg  − 

1

Lf
0

 
1

Cf
 − jg  − 

1

Cf

0
1

LG
 − jg

 x + 









1

Lf

0

0

 vinv + 









0

0

 − 

1

Lf

 vG 

 Iinv = Cc x = [ ]1   0   0  x  (4.1) 

  x[k +1] =  x[k] + inv vinv[k] + g vG[k] 

 iinv[k] = Cc x[k]  (4.2) 

 
  = eATs  

 inv = 











0

Ts

 eA e− jg(Ts 
− )

 d  Binv 

  g = 











0

Ts

 eA
 d  Bg  

 (4.3) 

The resulting matrices , inv, and g are shown in (A.1) in the appendix. 

The same approach can be used for the available reduced state-vector x = [iinv, vc]T as shown 

in (4.4) – (4.7) in the case of the LC-topology. The resulting matrices are shown in (4.7). 

Such a reduced state model is crucial for the LC-topology due to the lack of information 

regarding LG, vG, and iG. 

 
dx

dt
 = A x + Binv vinv + Bg iG = 







− jg  − 

1

Lf
1

Cf
 − jg

 x + 








1

Lf

0

 vinv + 








0

 − 

1

Cf

 iG 

  iinv  

= Cc x = [ ]1   0  x (4.4) 

 x[k + 1] =  x[k] +  inv vinv[k] + g iG[k]  

 iinv[k] = Cc x[k] (4.5) 
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  = eATs 

 inv = 











0

Ts

 eA e− jg(Ts 
− )

 d  Binv 

 g = 











0

Ts

 eA
 d  Bg 

(4.6) 

           =   e− jgTs 







cos( )arTs  − ar 

Cf sin( )arTs

 ar 
Lf sin( )arTs  cos( )arTs

 

      inv =  e− jgTs 







sin( )arTs ar 

Cf

 1 − cos( )arTs

 

            g 

=  e− jgTs  


2

ar

 
2

g − 
2

ar

 







cos( )arTs  + j sin( )arTs

ωg

ωar
 − e 

jgTs 

 arLf   
∙ sin( )arTs  + jgLf [ ]e 

jgTs − cos( )arTs

   

(4.7) 

The Equations (4.8) and (4.9) show the implementation of the Clarke-Transformation in the 

discrete domain and the consequent relationship between the system matrices in the - and 

dq-reference frames. 

 e−j gk + 1 = e−j( gk + gkTs) = e−j gk ∙ e−jgkTs 

 x[k +1] ∙ e−j gk + 1 = ( x[k] +  inv. 
vinv.[k] + g. ig.[k )]    

   ∙ e−j gk ∙ e−jgkTs 

  xdq[k +1] = ( xdq[k] +  inv. 
vinv.dq[k] + g. ig.dq[k )]  ∙ e−jgkTs (4.8) 

                      = dq =  ∙ e−jgkTs 

    inv = inv.dq = inv. ∙ e−jgkTs 

    g =  g.dq = g. ∙ e−jgkTs (4.9) 

Rostock Approach 

The Rostock approach published the proposal of another method to derive reduced state-

vector direct discrete models for the capacitor voltage and inverter current  for the LC-

topology without information of the grid-voltage in the -reference frame in [24]. In this 

approach, the continuous capacitor-voltage and inverter-current equations are transformed 

into the Laplace domain – (4.10) and (4.11).  
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                          Iinv( )s  − IG( )s  = VC( )s  ∙ Cf  ∙ s − Cf  ∙ vC( )t = 0  (4.10) 

 
                        Vinv( )s  − VC( )s  = Iinv( )s  ∙ ( )Lf s + Rf  − Lf 

 ∙ iinv( )t = 0  (4.11) 

After substituting the inverter voltage and the grid-current with a latched representation 

(zero-order hold – (4.12)), (4.10) and (4.11) are cross-solved for the inverter current and 

capacitor voltage: 

 

Vinv( )s  = 
vinv( )t = 0

s
,   IG( )s  = 

iG( )t = 0

s
 

(4.12) 

 Iinv( )s  = A1( )s  ∙ vinv( )t = 0  + A2( )s  ∙ vC( )t = 0  + A3( )s  ∙ iG( )t = 0  + A4( )s  ∙ iinv( )t = 0  (4.13) 

 VC( )s  = B1( )s  ∙ iinv( )t = 0  + B2( )s  ∙ iG( )t = 0  + B3( )s  ∙ vinv( )t = 0  + B4( )s  ∙ vC( )t = 0  (4.14) 

Transforming (4.13) and (4.14) back into the time domain and sampling at Ts yields the 

difference equations (4.15) and (4.16), where f [k] ≙ f (t = kTs) and f [k – 1] ≙ f (t = (k – 1)Ts): 

        iinv[ ]k  = A1t ∙ vinv[ ]k − 1  + A2t ∙ vC[ ]k − 1  + A3t ∙ iG[ ]k − 1  + A4t ∙ iinv[ ]k − 1  (4.15) 

         vC[ ]k  = B1t ∙ iinv[ ]k − 1  + B2t ∙ iG[ ]k − 1  + B3t ∙ vinv[ ]k − 1  + B4t ∙ vC[ ]k − 1  (4.16) 

Figure 4.1 and Figure 4.2 depict the resulting z-domain models. The equations for the 

coefficients are given in Table 4.1.  

 

 

Figure 4.1: Structure of the discussed discrete reduced state-vector models. a) Aalto 

approach: reduced state-vector model for the capacitor voltage [11], b) Rostock approach: 

reduced state-vector model for the capacitor voltage via direct discrete modelling [24]. 
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TABLE 4.1 

COEFFICIENTS OF DIFFERENCE EQUATIONS [24] 

Coefficient Equation  Coefficient Equation 

H1 sinh






Ts C(CR

2
 −4L)

2LC
 

C  e
−Ts/(2)

CR
2
 − 4L

  A4t H2 – H1R 

H2 
cosh







Ts C(CR

2
 −4L)

2LC
 e

−Ts/(2)
 

 B1t 2H1
L

C
  
𝑅=0
⇔   −B2t 

 L/R  B2t H1
CR

2 
– 2L

C
 + H2R – R 

A1t 2H1  B3t 1 – H1R – H2 

A2t −2H1 = −A1t  B4t H1R + H2 

A3t 1 − H1R − H2  A2t  /A1t −1 

 

Figure 4.2: Structure of the discussed discrete models. a) zero-order representation of the 

inverter within the continuous system, b) Rostock: reduced state-vector model for the inverter 

current via direct discrete modelling [24], c) Aalto: full state-vector model for the inverter 

current [11], and d) Aalto reduced state-vector model for the inverter current [11]. 
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Figure 4.3 and Figure 4.4 respectively show a time-domain plot and a frequency-domain 

plot for comparison of the direct discrete z-domain models to the continuous model with a 

discrete voltage source.  

Both the time-domain and frequency-domain plots show that the Aalto discrete full vector-

state model presented in [11] overlaps with the zero-order representation of the inverter 

voltage. Both reduced state-vector models (Aalto [11] and Rostock [24]) overlap with the 

discrete voltage source model up until the resonance frequency and start to deviate slowly 

above the resonance frequency. Therefore, this approximation should suffice to control up 

until the resonance and dampen the resonance itself. 
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                              Frequency in Hz                                                Frequency in Hz 

 ■ ZOH on continuous model ■ Rostock: reduced state-vector model[24] 

 ■ Aalto: reduced state-vector model [11] ■ Aalto: full state-vector model [11] 

Figure 4.3: Comparison of the discussed discrete models ([11] and [24]) with the reference 

zero-order representation of the reference inverter with fs = 3 kHz. Both subfigures illustrate the 

frequency response function of VG( )z /Iinv( )z . The right subfigure illustrates a zoom of the 

dynamic behavior around the resonant frequency.  
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In conclusion, the reduced state-vector models closely describe the discrete-voltage 

approximation system up until the resonance frequency – with a slight deviation above the 

resonance. A full state-vector model is not applicable without the information of LG, vG, and 

iG. Thus, the shown reduced-state vector models are an excellent basis for the control design 

for the LC-topology. 

Both methods of Aalto and Rostock are similar in the mathematical approach. In the Rostock 

strategy, the resistance of the L-filter is included, and the grid-current as disturbance is 

slightly differently implemented (as a latched approximation). In comparison, the reduced 

state-vector approaches of Rostock and Aalto perform very similarly. The Rostock approach 

does show slightly closer tracking of the reference model. The full state-vector model of 

Aalto University is used in the following for analysis of the overall system and to dissect 

problems with the grid-impedance. However, for the control and observer design, the 

reduced state-vector models of the University of Rostock are utilized. 

The Rostock approach is also applicable for a full-state vector model. In that case, the latch 

approach would be applied to the inverter and grid voltage instead. Since the Aalto approach 

shows perfect tracking already, introducing the Rostock full-state model is not necessary 

for the analysis of this paper. 
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 Time in ms Time in ms 

 ▬ ▬ ZOH on continuous model (reference) ─ Rostock: reduced state-vector model[24] 

 ….  Aalto: full state-vector model [11]   ─ Aalto: reduced state-vector model [11] 

Figure 4.4: Comparison of the discussed discrete models ([11] and [24]) with the zero-order 

representation of the reference inverter with fs = 3 kHz, left: inverter current time domain plot; 

right: capacitor voltage time domain plot. The resonant of the plants at app. 700  Hz is excited 

by 1 % of the nominal grid voltage. All other voltages are set to zero. 
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4.2. Control Design 

4.2.1. Open-Loop 

Active Damping 

Using the full-state model [11], (4.17) is solved for the inverter current and voltage to yield 

(4.18), showing the open-loop transfer function of the system before any decoupling. The 

coefficients, including the active damping via Rvir, are given in (A.2) in the appendix 

chapter.  

Figure 4.5 and Figure 4.6 show the influence of the virtual resistance implementation on the 

poles-zero map. The oscillatory poles p1 and p2 increase both in frequency and damping 

with increased active damping. However, after p1 and p2 are fully damped, p1 moves quickly 

out of the unit circle, resulting in instability of the system. p3, and the antiresonant zeros z1 

and z2 remain stationary with respect to the damping coefficient. 

 









Iinv(z)

Vc(z)

Ig(z)

 = 









  11    12    13

  21    22    23

  31    32    33

  









Iinv(z)

Vc(z)

Ig(z)

 ∙ z–1 + 









  inv1

  inv2

  inv3

 Vinv(z) ∙ z–1
 (4.17) 

  
Iinv(z)

Vinv(z)
 = 

C1 ∙ z3 + C2 ∙ z2 + C3 ∙ z + C4

 z4 + D1 ∙ z3 + D2 ∙ z2 + D3 ∙ z + D4 
 (4.18) 
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Figure 4.5: Pole-zero map of the discrete full-state vector plant model Iinv(z)/Vinv(z) with 

fs = 3 kHz, without decoupling and with varying active damping coefficient Rvir.  
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In conclusion, the virtual resistance can strongly dampen the resonance poles, but 

overdamping can yield instability. In consequence, the damping coefficient has to be chosen 

adequately. Further, (A.2) shows that the pole starting positions depend on the grid 

impedance. However, the decoupling of the capacitor voltage minimizes this influence. 

Decoupling Techniques 

Chapter 3.1 outlines the concept of capacitor voltage decoupling in the continuous domain. 

Figure 3.7 illustrates that this decoupling transforms the controlled plant to a first-order 

L-filter system. However, decoupling the capacitor voltage similarly in the discrete domain 

does not decouple all cross-coupling from the grid-side, as seen in (4.15) and (4.16), and 

Figure 4.2. The cross-coupling of the grid current into the inverter-current difference-

system remains – Iinv ( )z  ≠ f  (VC ( )z ), but Iinv ( )z  = f  (IG ( )z ). 

Figure 4.7 depicts the open-loop d-axis voltage step-response of the plant with various 

decoupling implementations. For similar decoupling as the continuous design of chapter  3, 

a first-order PT1-response for the d-axis current with close to zero reaction in q-axis current 

has to be achieved for this step test.  

The current dq cross-coupling is calculated with the same concept of (4.9) yielding:  

CCSFb = j ∙ Im{ }e−jgkTs ∙ A4t 
/A1t  = – j ∙ sin(g[k]Ts) ∙ A4t 

/A1t (4.19) 
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Figure 4.6: Zoomed root-locus of the discrete full-state vector plant model Iinv(z)/Vinv(z) 

with fs = 3 kHz without decoupling and with varying active damping coefficient Rvir. 
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Figure 4.7:Open-loop step response of the LC-filter plant (fs = 3 kHz) with various decoupling 

techniques (blue: d-current, red: q-current): A – decoupling cross-coupling state feedback, 

B – full decoupling state feedback, C – disturbance input decoupling for the grid current, 

D – disturbance input decoupling for the capacitor voltage, and E – active damping 

implementation; y-axis is the d-current in blue and q-current in red in kA, x-axis is time in s. 

Parameters in Table A.1 (Appendix). 
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The zero q-current reaction during this test demonstrates correct dq decoupling. While in 

the continuous domain, this zero reaction is achieved by the dq-current decoupling cross-

coupling state feedback (continuous: jL, discrete: – j ∙ sin(Ts) ∙ A4t 
/A1t), the discrete 

version also decouples a voltage cross-coupling via the manipulated input decoupling (e  

jTs 

derived according to (4.9)). For more detail on the comparison of continuous and discrete 

decoupling techniques, the interested reader may refer to [23], which was published in 

connection to this work. 

The PT1-reaction during this open-loop d-voltage step test represents the correct grid-

decoupling (disturbance input decoupling). As shown in chapter 3 (Figure 3.5), correct 

disturbance input decoupling reduces the plant to a first-order RL, which in return shows 

only PT1-alike responses. 

Six decoupling combinations of Figure 4.7 yield plant reactions that come close to this goal. 

The combinations with full decoupling state feedback (A & B) achieves the PT1-behavior 

even without grid-current information. A similar comparison between different decoupling 

techniques was published during this work in [23] for the RL-load. With the full state-

feedback decoupling, the plant shows deadbeat-alike attributes. For the RL-load – as shown 

in [23] – the dynamic responses indicate that this approach is very sensitive to delay times. 

The combination of decoupling cross-coupling state-feedback (A), both types of disturbance 

input decoupling techniques (C – for ig[k] and D – for vc[k]), and active damping (E) 

resemble a similar design approach to the continuous design of chapter 3 and shows less q-

current reaction compared to the same combination without decoupling cross-coupling 

state-feedback (see also Figure 4.8). 
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Figure 4.8: Discrete current control design in the dq-reference frame (fs = 3 kHz). Left: The 

open-loop root locus of the controlled plant in blue/green with the final pole locations in red. 

Right: Block diagram of the implemented control strategy with DID (disturbance input 

decoupling), DCCSFb (decoupling cross-coupling state-feedback: – j ∙ sin(Ts) ∙ A4t 
/A1t), 

AD (active damping – Rvir), and MID (manipulated input decoupling: e  
jTs).… 
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In conclusion, the latter combination (A, C, D, E in Figure 4.7, also Figure 4.8) was chosen 

as the basis of the control design since similar attributes to the continuous case were 

achieved. The complete control scheme in separate d- and q-axis is shown again in 

Figure 5.4. However, the full state-feedback decoupling (A & B in Figure 4.7) seems very 

promising and should be investigated further apart from this work. 

Figure 9.1 and Figure 9.2 in the appendix chapter respectively illustrate the command 

tracking and dynamic stiffness attributes for the closed-loop control with the various 

decoupling techniques. Some of the methods do not yield stable operation, and thus, no plot 

is displayed.  
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4.2.2. Current Controller 

After decoupling the grid voltage and the grid current, the plant model can be approximated 

to (4.20). Similar to the EV placement of subchapter 2.1.3 and (2.14), (4.21) illustrates the 

tuning for this plant with a PI controller with a gain of K and a zero placed at c.  

Iinv( )z

Vinv( )z
 = 

A1tz
−1

1 − A4t ∙ cos(Ts) z−1 (4.20) 

 EVs:  p
1/2 = − 

A1tK − 1 − A4t ∙ cos(Ts)

2
  

 ± 






A1tK − 1 − A4t ∙ cos(Ts)

2
 

2

 − A4t ∙ cos(Ts) + A1tKc 
(4.21) 

Figure 4.8 (left) shows the root locus of the given plant for the chosen controller zero c. 

The gain K subsequently tunes the eigenvalues to the final values as indicated in red. These 

separated eigenvalues are chosen similar to the continuous design of chapter  3.2 (well 

separated with the higher eigenvalue representing the bandwidth of the control). 

Figure 4.8 (right) presents the full implementation of the active damping, the decoupling 

techniques, and the current controller. Figure 4.9 shows dynamic stiffness and command 

tracking plots for different active damping coefficients Rvir in the discrete domain. Note, 

the command tracking can only be obtained within the discrete domain. As the grid voltage 

and grid current both are continuous signals, dynamic stiffness can be obtained in the 

continuous domain even for a discrete control system.  

Further, the discrete space distorts the angle information as it warps the continuous pole-

zero space onto the unit circle. Therefore, continuous frequency response estimation plots 

are necessary to evaluate passivity. For the sake of design and comparison to the continuous 

control design, the dynamic stiffness plots of the discrete current control are assessed and 

depicted in the continuous space in this chapter. In the actual lab setup, these continuous 

measurements are obtainable but not implemented yet. 
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Comparing the results of the discrete design (Figure 4.9) with the results of the continuous 

design (Figure 3.7) shows very similar outcomes. Comparable effective damping is 

achieved but at the cost of negative real components of the impedance seen from the grid. 

The non-passive regions do feature a very high impedance value, though.  The showcased 

control algorithm utilizes the grid-current information. The LC-topology assumption does 

not include the measurement of the grid current, and thus, a discrete representation of the 

observer shown in chapter 3.2.1 and Figure 3.10 is designed in the following subchapter.  

4.2.3. Discrete Luenberger-Style Observer 

This chapter presents a discrete representation of the Luenberger-style observer of 

chapter 3.2.1 and Figure 3.10. 
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                               Frequency in Hz                        Frequency in Hz 

                        ─ w/ small Rvir    ─  w/ large Rvir                               ─ w/ small Rvir    ─  w/ large Rvir 

Figure 4.9: Dynamic analysis of the discrete current controller (3 kHz samping) for the LC-

toplogy with different virtual resistances for active damping: Left: dynamic stiffness, Right: 

command tracking. Small and large virtual resistances describes Rvir in the red and purple region 

of Figure 4.5, respectively. 
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Figure 4.10 illustrates the basic structure of the discrete Luenberger-style observer within 

the overall current control scheme. The observer is based on the reduced state-vector model 

of chapter 4.1 – equation (4.16) − without the grid-current component. Consequently, the 

observer controller inherently estimates this component. With (4.16), an estimate of the grid 

current is calculated and used for the decoupling techniques and active damping, as shown 

in Figure 4.8. 

Different parameter estimation errors are introduced into the control design for robustness 

analysis. The error is implemented for the plant′s resistance, inductance, and capacitance 

parameters. Further, the error is applied such that the deviance in the time constants is 

maximized, i.e., when estimated inductances increase with error, capacitance estimates 

increase as well, and resistance estimation decrease. Consequently, the calculated 

eigenvalues move strongly with the estimation error. Thus, the control design approach of 

Figure 4.8 and (4.21) cannot be applied in the same way for various cases yielding similar 

pole-zero placement. However, using a pole-zero cancellation technique instead, i.e., 

c = A4t ∙ cos(Ts), K = ( )1 – e− j2fbrTs  / A1t achieves dynamic plots with better 

comparability.  

 

Figure 4.10: Discrete current control using a discrete Luenberger-style observer of the 

capacitor voltage model of the LC-filter. The observer estimates the grid-current and 

consequently the capacitor current. 
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Figure 4.11 presents the frequency response functions of the controlled system with dead-

beat observer-based grid-current estimation for different parameter estimation errors. The 

plots indicate robust dynamic attributes and a well-damped system similar to the continuous 

results shown in chapter 3.2.1 – Figure 3.11.  

Figure 4.12 further shows comparable results for the same dynamic plots in the case of a 

PI-controller-based observer. However, similar to the continuous case, faster tuning of the 

observer results in more robust control and a dynamically better behaved system. The 

disadvantage of faster tuning is the reduced noise filter capabilities of the observer.  

4.3. Discrete Design Conclusion 

Chapter 3 presented an analysis of the control problem. That chapter further laid out the 

control scheme's goals, showed the realization in the continuous domain, and therefore 
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                               Frequency in Hz                        Frequency in Hz 

                  ─ 0  % parameter estimation error                                  ─  10  % parameter estimation error 
                  ─ 20  % parameter estimation error 

Figure 4.11: Dynamic analysis of the discrete current controller (fs = 3 kHz) for the LC-

topology with active damping using a dead-beat discrete Luenberger-style observer for grid-

current estimation: Left: dynamic stiffness, Right: command tracking. 
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serves as a reference for the control design in the discrete environment. In addition, this 

chapter presented the discrete modeling, the consequent decoupling techniques, the 

implementation of active damping similar to the continuous method, the current control 

implementation, and the observer design. Further, dynamic analysis (command tracking and 

dynamic stiffness/passivity) and robustness analysis are provided for the control system. 

The control achieves similar dynamic attributes in all these steps compared to the 

continuous reference. The results present a dynamically well-behaved, well-damped, and 

robust control technique of LC filters without grid-impedance information.  
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                               Frequency in Hz                        Frequency in Hz 

                  ─ 0  % parameter estimation error                                  ─  10  % parameter estimation error 
                  ─ 20  % parameter estimation error 

Figure 4.12: Dynamic analysis of the discrete current controller (fs = 3 kHz) for the LC-

topology with active damping using a 300 Hz PI-controller-based discrete Luenberger-style 

observer for grid-current estimation: Left: dynamic stiffness, Right: command tracking. 
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The following chapter presents further control issues that stem from the hardware 

implementation process. The main problems are the computational delay and the PWM-

based inverter as voltage source instead of this chapter's perfect discrete voltage source 

approximation. The delay alone causes an 84° phase of the capacitor current feedback 

regarding the resonance frequency for the given parameters, which mitigates all active 

damping.  
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5. Implementation Space Design 

The previous chapters provide physical insights into the control problem, the tools necessary 

for accurate discrete modeling, and control design for implementation on a microcontroller-

based platform. However, the full complexity of the system – including the actual switches, 

PWM, delay times, the PLL (Phase-Locked Loop), sensor noise, filters, saturation effects, 

etc. – is not yet encompassed in these simulation models. Therefore, the final validation 

should be held out in actual hardware. However, in simulations, most of these effects can 

be introduced into the model. Moreover, simulations can separate these issues and analyze 

the influence one at a time. 

This chapter will focus on implementing and analyzing the computational delay and the 

PWM, which strongly influence the system's dynamics. Simulations can evaluate these two 

implementation issues separately.  
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 Time in ms Time in ms 

 ─ vC,a(t)  ─ vC,a[k] ─ iinv,a(t)  ─ iinv,a[k] 

Figure 5.1: Comparison of sampled values with actual continuous raw signal with single-

sampling. Left: Sampling capacitor voltage at PWM extrema yields errors; Right: Sampling 

inductor current at PWM extrema filters out switching ripple with minimized error.  



 

5. Implementation Space Design 

 

 

58 

 

 

 

 

5.1. Computational Delay 

The publications [19, 45] describe that the current at an inductive load driven by a PWM-

based inverter should be sampled at the extrema of the PWM. This sampling timing filters 

out the fundamental switching harmonic during the analog to digital conversion (see 

Figure 5.1). This ripple is inevitable, and picking it up would cause the controller to react 

to it, increasing harmonics and distortion.  

The update of the voltage could occur in between these sampling instances. Since this delay 

changes the system's dynamics (see modified z-transform [96]), the delay should be kept 

constant, though. Further, updating in between the extrema can cause double switching 

(changes harmonic spectrum/switching frequency). Therefore, the most common approach 

is updating the reference at the current sampling instances (i.e., at the extrema of the PWM-

carrier) but delayed by one sampling period (Figure 5.2). 

Since the switches turn on during one flank of the PWM-carrier and switch off during the 

other, sampling and updating the reference twice per PWM-carrier period is possible 

 

Figure 5.2: Model of the computational delay of the inverter system. a) time diagram of single-

sampling, b) time diagram of double-sampling, c) z-domain LC-current model in the -frame 

with computational delay, d) z-domain LC-current model in the dq-frame with computational 

delay. 
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(Figure 5.2.b). This method is also referred to as double-sampling. For both cases – single- 

and double-sampling – this implementation of updating and sampling results in a unit delay 

for the manipulated input.  

5.1.1. Delay Model 

The publications [19, 23–25, 45] state that the unit delay in the -reference frame can be 

transferred into the dq-frame via:  z
−1| → e−jTs

 ∙ z
−1|dq

. In consequence, the delay 

introduces a phase-shift by  = −Ts in the dq-frame and the delay itself. Since the 

reference frame frequency  is considered a constant (dynamically much slower than 

inverter current), the compensation of this phase shift is very straightforward, as shown in 

Figure 5.2.d. However, the delay itself denies proper access to the manipulated input and 

thus compromises the decoupling techniques demonstrated in chapter 4. 

5.1.2. Control and Observer 

This work published the implementation of discrete Luenberger-style observers for future 

state information in [23–25]. Similar to the observer of the capacitor-voltage model in 

chapter 4, Figure 5.3 shows the structure of the inverter-current observer. The capacitor 

voltage model still estimates the grid-current, which is passed to the inverter-current 

observer. These two observers provide future state information for the capacitor voltage, 

the inverter current, and present state information of the grid current and the capacitor 

current (capacitor current is calculated from inverter and grid current – see Figure 5.4). 

As described in chapter 3.1.2, disturbance input decoupling and decoupling state feedback 

are vastly different regarding the sensitivity of parameters, timing, and, most importantly, 

signal accuracy. Therefore, the estimated future state information cannot be used for 

disturbance input decoupling.  

The measured capacitor voltage and the first instance of grid-current estimation yield the 

best results for the disturbance input decoupling techniques. This behavior is to be expected 

since disturbance input decoupling is very sensitive to sudden changes, and the disturbances 

themselves are commonly no energy states or simply dynamically much faster than the 

system states. The decoupling state feedback techniques, on the other side, benefit a lot from 

future state estimations. 
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As described previously, the active damping does not achieve proper damping with 

significant phase errors concerning the resonance. The phase error in deg caused by the 

delay can be calculated via 360 ∙ fRes ∙ Ts. In most cases, this phase error will exceed any 

tolerance for effective active damping (in this case, 84 °). Therefore, the proposed active 

damping approach can only yield proper damping with delay compensation. The publication 

[24], which was derived from this work, shows that additional future state observers can be 

implemented, as shown in Figure 5.3 (in full detail and execution order in Figure 5.5). These 

observers are based on the future state information of the previous observer and the future 

reference voltage, which are all obtainable, as shown in Figure 5.4. 

Since the grid current is just an estimated disturbance and not an observed state, the 

observer's estimate lags depending on the observer's controller bandwidth which was shown 

and published in connection to this work in [24]. That publication [24] further shows that 

the dead-beat implementation ensures that the current information lags by one sample step. 

Therefore, three stages of the cascaded observer structure (for k + 2 estimations) must be 

 

Figure 5.3: Discrete Luenberger-style observer structure for future state estimation using the 

current and voltage model of the LC-plant. Dynamic analysis (for tuning see Figure 4.10). The 

cascadedd structure is shown in Figure 5.4 within the overall control structure. Further the 

detailed cascaded observer structure including the execution order is shown in Figure 5.5. 
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implemented to establish a proper phase of the estimated grid-current, as shown in 

Figure 5.4.  

The general concept of the observers is based on the fact that the mathematical model can 

bypass the computational delay. Therefore, the control system and observers have the 

information on both vinv[k + 1] and vinv[k] for feed-forward. vinv[k] is used for the k-sample 

observer stage with the measurements iinv[k] and vC[k]. The following sampling stages use 

 

Figure 5.4: Block diagram of the current control structure with delay compensation via a 

cascaded Luenberger-style observer structure with active damping implementation and 

decoupling techniques: DCCSFb – Decoupling Cross-Coupling State Feedback, 

DID – Disturbance Input Decoupling (index: vc – capacitor voltage, ig – grid-current). A 

shorter version in complex format is displayed in the appendix in Figure 9.5. Further the detailed 

cascaded observer structure including the execution order is shown in Figure 5.5. 

 



 

5. Implementation Space Design 

 

 

62 

 

 

 

 

future estimated and observed states from the previous stages (for instance: [k + 1]-stage 

uses i
^
inv[k + 1] and v

^
C[k + 1] from the [k]-stage – Figure 5.3 and Figure 5.5). However, the 

[k + 2]-stage misses a proper feed-forward – vinv[k + 2]. vinv[k + 2] could be approximated 

by utilizing future state information on a separate future-state controller. However, using a 

rotated version of vinv[k  + 1] as an approximation did yield robust and well-behaved 

dynamics already (vinv[k + 2] = vinv[k + 1] ∙ e 
jT– see Figure 5.3 and Figure 5.5).  

To create the final structure, however, the implementation of the active damping has to be 

included in the feed-forwards. Since the k-sample state is stored from the previous cycle, 

the active damping portion is already included.  

The [k + 1]-stage and [k + 2]-stage, on the other hand, need a damping signal at the feed-

forward before the iG[k + 1] and iG[k + 2] estimation are derived. Thus, approximations of 

these damping portions had to be found. Instead, for the [k + 1]-stage and [k + 2]-stage, the 

estimates of iG[k] and iG[k + 1] are used, respectively. 

Figure 5.5 shows the detailed block structure of the cascaded discrete Luenberger-style 

observer. The red numbers indicate the execution order of the main calculations. Each 

calculation has to be reliant on signals with lower execution numbers.  

Example:  

1. Execution block 4 relies on vinv[k] and vC[k] with execution order 0, estimated 

iG[k], which was derived in execution block 1 and execution block 3. Thus, the 

estimated iG[k] has to be multiplied with A3t 
/A1t (estimated) before execution 

order 4.  

2. The calculation for iC[k + 1] needs estimated iinv[k + 1] from execution block 4 

and estimated iG[k + 2]  from execution block 9 and thus has to be performed 

any time after 9. 

For more detail, a flowchart of the overall current control algorithms with observer 

implementation is shown in Figure 6.11. 

  



 

5. Implementation Space Design 

 

 

63 

 

 

 

 

 
Figure 5.5: Cascaded discrete Luenberger-style observer-structure in full detail with 

execution order for main csalculations. Execution 0 indicates that this value is present at the 

start of the calculation sequence.  
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Figure 5.6 shows the resulting frequency response estimation plots for varying parameter 

estimation errors up to 30 % with the current control structure of Figure 5.4 using active 

damping, disturbance input decoupling, decoupling cross-coupling state feedback based on 

current, and future state information estimated from the proposed cascaded discrete 

Luenberger-style observer structure. 

The proposed delay compensation structure (Figure 5.4) achieves a very robust and well-

damped system. However, the results shown in Figure 5.6 are still based on the perfect zero-

order-hold discrete voltage assumption. The following subchapter introduces the PWM-

based inverter as a voltage source. 
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                               Frequency in Hz                        Frequency in Hz 

                  ─ 0  % parameter estimation error                                  ─  15  % parameter estimation error 
                  ─ 30  % parameter estimation error 

Figure 5.6: Dynamic analysis for different parameter estimation errors of the discrete current 

controller for the LC-topology (w/ computational delay, 3 kHz sampling) with active damping 

(Rvir = 30 m) using a deadbeat-based cascaded discrete Luenberger-style observer structure 

(see Figure 5.3 and Figure 5.4) for estimation of present and future state information for the 

grid-current, inverter current, and capacitor voltage. Left: dynamic stiffness, Right: command 

tracking.  
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5.2. PWM-based Voltage Source 

In this subchapter, the PWM-based inverter replaces the zero-order-hold discrete voltage 

source assumption in the simulation. 

5.2.1. Sampling Issues 

150 Hz in dq 

The publication [46] describes comprehensively the errors caused in current sampling due 

to the PWM. The PWM is not an ideal discrete voltage source. The PWM matches the 

intended voltage on average but contains components that deviate from it. Consequently, 

the sampled current contains response of the ideal voltage and artifacts from the PWM. The 

paper describes these error components and shows that mainly the fundamental, the −2nd, 

and the 4th harmonics are affected. This paper further shows that this effect is almost entirely 

mitigated for double-sampling, as the described components of the −2nd and the 4th  

harmonics cancel out with that sampling scheme.  

The −2nd and 4th harmonics in the dq-reference frame both result in superimposed 150  Hz 

signals. 

Figure 5.7 (left) shows the step response of the proposed control structure with and without 

the PWM implementation. The 150  Hz component caused by the PWM is very prominent. 
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                       Time in ms                                                       Time in ms 

─ PWM-based voltage source   ---   PWM-based voltage source  

…  w/o PWM (discrete voltage source)   . . .  w/o PWM (discrete voltage source) 

 

Figure 5.7: Step response comparison of the controlled LC-plant with the proposed current 

control scheme (Figure 5.4) with PWM-based voltage source representation vs the zero-order-

hold discrete voltage source model. Left: single-sampling (fsw = 3 kHz, fs = 3 kHz), 

Right: double-sampling (fsw = 3 kHz, fs = 6 kHz). 
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The paper [46] also suggests that double-sampling can mitigate this problem. This 

suggestion seems very promising as faster sampling in most cases improves control 

dynamics, and all delays and phase shifts in the signals become smaller. Figure 5.7 (right) 

illustrates the same comparison in step response with and without PWM in the case of 

double-sampling (fsw = 3 kHz, fs = 6 kHz). The double-sampling eliminates the 150 Hz 

distortion almost entirely. 

Phase and Magnitude of PWM 

The paper [97] describes the discrepancy between the zero-order hold approximation and 

the PWM. The differences are pronounced in the spectrum (see Figure 5.8). Further, the 

closer the reference signal approaches the Nyquist frequency fs/2, the stronger the PWM 

 
s ─ sample frequency in rad/s,   r ─ signal frequency in rad/s,  ─ frequency (FFT) in rad/s 

Figure 5.8: Normalized amplitiude 

spectrum for a sinusoidal reference input signal 

with frequency   r = 0.37 s for: (a) the ZOH 

element, (b) PWM with modulation index 

m = 0.3, and (c) PWM with m = 1. Image from 

[32] (p.1518). 

Figure 5.9: Plot of modulation gain over 

modulation for: Dashed violet – the actual 

identified nonlinear modulator gain, solid 

blue – the linear magnitude of the proposed 

PWM model of [32], and solid red – ZOH 

representation for a sinusoidal reference 

input with (a)   r = s/20, (b)   r = s/6, and 

(c)   r = 0.4 s. Image from [32] (p.1518). 
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sidebands affect the fundamental. This distortion leads to increased phase and magnitude 

errors at higher frequencies – compare (a) to (b) to (c) in Figure 5.9 (the error changes from 

appr. 0.4 % at s/20 to 4 % at s/6 to 22 % at 0.4 s). Furthermore, this discrepancy depends 

on the modulation index (Figure 5.9  – higher modulation index results in higher modulation 

error) and the plants' time constants [97]. 

The publication [97] describes this effect only for first-order systems like an inductive 

machine or L-filter based converter. Nonetheless, the findings still apply to the LC-filter, 

but the order of impact remains a subject of further investigation. 

The Sampling of Capacitive Signals 

As mentioned before (chapter 5.1), sampling at the PWM-extrema works well for inductive 

signals of voltage source inverters such as the inverter current for L- or LC-filters (see 

Figure 5.1–right in the Appendix chapter). However, this sampling strategy is very 

problematic for capacitive signals. Sampling the voltage at the capacitor at the PWM-

extrema leads to substantial measurement errors. Figure 5.10 (left) shows that this sampling 

technique does not sample the average but one of the extrema of the resulting voltage ripple 

in the case of single-sampling. On the other hand, Figure 5.10 (right) illustrates that double-

sampling yields an alternating measurement between the extrema of the voltage ripple. This 

sampling problem becomes even more severe for voltage measurements at first-order L-

filters, as the voltage is not an actual energy state in such circumstances. 
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         Time in ms                                       Time in ms 

 ─ vC,a(t)  ─ vC,a[k] ─ vC,a(t)  ─ vC,a[k]   

Figure 5.10: Comparison of sampled capacitor voltage (line-neutral) with the actual continuous 

raw signals with single-sampling on the left and double-sampling on the right. The sampling 

takes place at the extrema of the PWM leading to conceptual sampling errors.  
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This issue can be mitigated by measuring in between the extrema. The downside of that 

sampling technique is a considerable reduction of available computation time (cut in half) 

and a slight change in the system′s dynamics. This sampling issue was noted in this work, 

but no correction was implemented. The consequent oscillations at switching frequency for 

double-sampling were very apparent on the manipulated inputs and sampled currents. 

Further, the measurements do not represent the average model behavior and thus can cause 

estimation inaccuracies of the observers. In simulations, the described improved sampling 

strategy did solve the related issues. The improved sampling strategy is not part of this work 

to be consistent between simulations and measurements. 

Figure 5.11 and Figure 5.12 show the frequency response function plots for different 

parameter estimation errors up until 30 % for single-sampling and double-sampling, 
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                     ─ 0  % parameter estimation error                                  ─  15  % parameter estimation error 
                     ─ 30  % parameter estimation error 

Figure 5.11: Dynamic analysis for different parameter estimation errors of the discrete current 

controller for the LC-topology (w/ computational delay and 3 kHz PWM and 3 kHz single-

sampling implementation) with active damping (Rvir = 30 m) using a deadbeat-based cascaded 

discrete Luenberger-style observer structure (see Figure 5.3 and Figure 5.4) for estimation of 

present and future state information for the grid-current, inverter current, and capacitor voltage. 

Left: dynamic stiffness (impedance), Right: command tracking.  
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respectively. The dynamic attributes for both cases of sampling yield very similar results to 

the previous baselines of the continuous and discrete designs.  

The computational delay does lead to a drop in phase and magnitude of the harmonic 

impedance close to the Nyquist Frequency. This drop, however, is still well-damped in all 

of the displayed cases of estimation error.   

The main advantages of double-sampling are achieved due to the higher sampling 

frequency. Doubling the switching frequency would yield similar harmonic impedance plots 

but at the cost of higher switching losses. Further, as shown earlier [46], major harmonic 

(– 2nd and 4th) issues are solved by this sampling technique, as well.  
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                               Frequency in Hz                        Frequency in Hz 

                      ─ 0  % parameter estimation error                                 ─  15  % parameter estimation error 
                      ─ 30  % parameter estimation error 

Figure 5.12: Dynamic analysis for different parameter estimation of the discrete current 

controller for the LC-topology (w/ computational delay and 3 kHz PWM and 6 kHz double-

sampling implementation) with active damping (Rvir = 30 m) using a deadbeat-based 

cascaded discrete Luenberger-style observer structure (see Figure 5.3 and Figure 5.4) for 

estimation of present and future state information for the grid-current, inverter current, and 

capacitor voltage. Left: dynamic stiffness (impedance), Right: command tracking.  
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5.3. Implementation Space Conclusion 

This chapter focused on implementing and compensating for the computational delay that 

is inevitable for DSP- and PWM-based inverters.  

The compensation is based on a cascaded Luenberger-style observer structure that estimates 

future states. The future state information is used for decoupling techniques and active 

damping. However, the disturbance input decoupling uses the current state information from 

measurements, which is critical, as described in chapters 3.1.2 and 5.1.2.  

Further, this chapter showed the influence of the PWM regarding the distortion of the −2nd 

and 4th harmonic. Double-sampling improves the distortion problem. In general, double-

sampling yields a more robust and damped control system. 

The final control structure with active damping and delay compensation shows very damped 

and robust system attributes for single- and double-sampling (see Figure 5.13). 

The next chapter describes the experimental setup, which includes the down-scaling of the 

original plant to a 25 V-based laboratory test bench. 
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Figure 5.13: Time domain plot of the  inverter currents after command step at t = 1 ms with 

the proposed current control scheme for double-sampling on the left and single-sampling on the 

right. 
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6. Experimental Setup 

This chapter outlines the design and approximation methods of the experimental low-

voltage test bench. The design process entails the scaling process of the passive components, 

semiconductors (switching and conduction attributes), and the dead and delay times. 

Further, this chapter describes the measurement and evaluation methods in detail.  

The final design is depicted in Figure 6.1 − Figure 6.3, and Figure 9.7 and Figure 9.8 in the 

appendix. 

6.1. Design 

For the laboratory setup at the University of Rostock, the original wind turbine converter 

parameters had to be scaled down in power to fit the laboratory grid. Most electrical 

components are not scale-invariant regarding physical size and power dimensions. The 

design step has to quantify consequent discrepancies, and in many cases, a viable alternative 

has to be found.  

 

Figure 6.1: Diagram of the laboratory scaled 25  V low-power test bench. The control board is 

based on a DSP/FPGA combination controlling the gate signals of the inverter and setting up 

the startup via relays.  
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The predominant semiconductor at the 690  V (1.1 kV DC-link) level of wind turbine 

converters is the IGBT. However, the IGBT is a bipolar device. It is not suitable for the 

25 V level of the test bench due to a poor relationship between conduction and switching 

loss attributes for these power levels.  

A proper replacement at this voltage level is the MOSFET. However, since MOSFETs are 

unipolar, these devices are very different regarding conduction and switching characteristics 

than the IGBT. Therefore, adaptations have to be employed to find an appropriate 

representation of the IGBT. Similar issues are present for the passive components. The 

 

1  – FPGA Xilinx 

  Spartan 

2  –  DSP TMS320 

3  – Sensor inputs 

  (OP-amps) 

4  –  PWM-output 

  signals 

5  –  Line driver 

6  –  RS232:  

  programming 

  & reading 

Figure 6.2: Photographs of the control board of the 25  V test bench − DSP/FPGA combination 

and peripherals. 

 

1 – PWM-input signals (from  FPGA) 

2 –  Isolation chips 

3 – DC-link 

4 –  Half-bridge drivers 

5 –  Low-side phase switches 

6 –  High-side phase switches 

7 –  Chopper 

8 –  Placeholder for alternative 

 microcontroller 

 

Figure 6.3: Photographs of the inverter board of the 25V laboratory test bench – phase 

switches, drivers, and peripherals.  
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methods for scaling and adaptations are shown in the following for the different 

components. 

6.1.1. Voltage, Current, and Power-Scaling 

This subchapter displays the derivation of the scaling factors for voltage nu and current ni 

and the consequent change in design parameters. In the following, the indexes m and n 

indicate the test bench parameters and the nominal values of the given setup, respectively 

(without index m implies the original full-scale power plant). 

ni = 
In

In-m
,   nu = 

Vn

Vn-m
 (6.1) 

This work defines five scaling criteria for the test bench in comparison to the original model: 

1. Equal relative (short-circuit) inductive voltage drop uk:  uk = uk-m 

2. Equal relative (no-load) capacitive current i0:  i0 = i0-m 

3. Equal ratio of stored energy and power:   
EC

 EC-m
 = 

P

Pm
 

4. Equal time constants 

5. Equal resonant frequency 

 

Criteria 1 and 2 lead to (6.2) and (6.3), which illustrate the proper scaling of the test bench 

parameters. Finally, (6.4) – (6.6) show that (6.2) and (6.3) also meet the criteria 3 to 5, 

respectively.  

 uk = 
LIn

Vn
                uk-m = 

LmIn-m

Vn-m
 

uk = uk-m = 
  LIn

Vn
 = 

  LmIn-m

Un-m
 

 L = Lm 

nu

ni
.   R = Rm 

nu

ni
. 

(6.2) 

 i0  = 
  CVn

In
  and  i0-m = 

  CmVn-m

In-m
 

i0  = i0-m = 
  CVn

In
 = 

  CmVn-m

In-m
 

 C = Cm 

ni

nu
. 

(6.3) 
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EC

 EC-m
  = 

1

2
CmVn-m

2

 
1

2
CVn

2
  =  

Vn-mIn-m

VnIn
  =  

P

Pm
 

     
nu

 ni
 






1

 nu

2

 = 
1

ni
 

1

 nu
   ✓ 

(6.4) 

 
LC-m = LmCm = L 

ni

nu
 C 

nu

ni
   =  LC  =  LC   ✓ 

 

RL-m = 
Lm

 Rm
  =  

L

 R
 
ni

nu
 
nu

ni
  =  

L

R
  =  RL  ✓ 

(6.5) 

 fR-LCL-m = 
1

2
 

L1m + L2m

 L1mL2mCm
  =  

1

2
 

ni

nu
 (L1 + L2)







ni

nu

2

∙ 
nu

ni
 L1mL2mCm

  

    = 
1

2
 

L1 + L2

 L1L2 C
  =  fR-LCL   ✓ 

(6.6) 

6.1.2. Semiconductor Scaling 

Conduction Behavior 

As described previously, the MOSFET is the preferred semiconductor for the 25  V test 

bench for this work. The unipolar MOSFET features conduction losses similar to a resistor 

RDS. In contrast, the bipolar IGBT shows conduction losses that depend on the load current, 

as shown in Figure 6.4.  

The on-state resistance is part of the design attributes of the MOSFET and is  consequently 

chosen to represent the IGBT at a meaningful operating point.  In this work, the RDS of the 

MOSFET was selected to match the relative voltage drop VCE at the nominal current (RMS-

value) and nominal operating temperature, as shown in (6.7) and Figure 6.4.  

 

  VCE(I = IN) = VDS-m(I = IN-m) ∙ nu  

  RDS = 
VDS-m(I = IN-m)

 IN-m
 

(6.7) 
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The temperature of the MOSFET highly depends on the operating point and the cooling 

system. The operating point can vary dramatically in the wind turbine example.  The nominal 

case is chosen for the design in this project. It should be noted that the reverse conducting 

bipolar body-diode of the MOSFET has much higher on-state losses (appr. ten times) than 

the unipolar MOSFET. This body-diode, however, only conducts during the approximately 

1 − 3 µs dead time of the half-bridge switching. This discrepancy leads to a conduction loss 

error of roughly 9 % (10 times as much loss during ~ 1% of the time). This effect could be 

mitigated by lowering the dead time.  

However, the dead time also results in a voltage-time area error during switching events 

depending on the current direction (i.e., once per switching period). For example, a 3 µs 

dead time leads to an average voltage error of 11  V in the original setup and 0.4  V on the 

test bench. Normalized with the grid voltage (phase-phase RMS), this represents a 1.6 % 

error. The error at each sampling instance, on the other hand, depends on the reference 

voltage, and the percentage error can go up to infinite at 0  V reference.  

Therefore, comparing the two effects of conduction loss error of the body diode and the 

voltage-time area error is not straightforward. This work, however, assumes the latter is 

more severe. The main argument for this statement is that a small error in losses for the 

switches will be negligible compared to the other loss errors caused by the cables, 

 

Figure 6.4: Datasheet characteristics of the original IGBT and the model MOSFET. 

Left: Forward-Voltage drop of the IGBT FF1000R17IE4P, Right: on-state resistance of the 

MOSFET IRFS4310PbF. 
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transformers, inductors, and all the remaining passive components of a low-voltage system. 

The manipulated input's 0.4 V average voltage error might impact the control, though. Thus, 

the same dead time of the original setup was used for the low-voltage test bench. 

The temperature estimate used in Figure 6.4 for calculating the on-state resistance can 

fluctuate in a wide range. Nonetheless, the chosen semiconductor is a good approximation 

of the nominal operating point of the original converter.  

Switching Behavior 

In this work, the main criteria for switching behavior representation are the voltage rise and 

fall time at the MOSFETs (Figure 6.5), and the effective dead time of the half-bridge 

switching to prevent shoot-throughs (Figure 6.6). 
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  Time in ns  Time in ns 

Figure 6.5: Measurements of the voltage flanks of the Drain-Source voltage VDS of the 

MOSFET IRFS4310PbF with RG,on = 300  and  RG,off  = 110  Left: turn on appr. 480 ns, 

Right: turn off approx. 480 ns. 
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 ─ Gate Drive Input VHB    ─ Drain-Source voltage VDS    ─ Gate Voltage VGS    ─ Inductive Load Current IL   

Figure 6.6: Measurements of the switching dead time of the bottom MOSFET IRFS4310PbF 

and gate driver IR21094SPbF with RDT = 150 k Left: turn on, Right: turn off, t ≈ 2 µs.  
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To achieve similar rise times as the original setup during the turn on and turn off, the gate 

resistances RG,on and RG,off had to be chosen accordingly. This adjustment was held out via 

measurement and iteration. Figure 6.5 shows the final results using RG,on = 300  and 

RG,off  = 110  achieving voltage flanks in the 500  ns range, similar to the original IGBT 

setup.  

The gate driver IR21094SPbF is used in this project. The dead time can be varied via an 

external resistor. Via measurements and iteration, this resistor was set to 150 k  resulting 

in roughly 2 µs dead time (see Figure 6.6). 

6.1.3. Inductive Component Scaling 

Subchapter 6.1.1 lays out the intended scaling of the parameters regarding resistance, 

inductance, and capacitance for all the components. However, the available components 

cannot always match these desired values. This subchapter describes the challenges of 

reaching the correct low-voltage scaled model for inductive components. 

The publication [98] describes the scaling laws of inductive components (6.8) – (6.10) in a 

broad sense, where u is the geometric scaling factor (length ∙ u, width ∙ u, height ∙ u), S is 

the apparent power, m is the mass of the component, and Ploss denotes the power loss. The 

described derivations generally show that inductive components scale well into higher 

power applications. With higher power, the relative mass in kg / kVA and the relative losses 

in kW / kVA go down.  

Inversely, the relative mass and losses go up when scaling into lower power. (6.8) – (6.10), 

however, are only accurate if B and J are kept constant (B – magnetic flux density 

magnitude, J – current density magnitude), which would be the case for most industrial 

applications as B and J are usually designed close to the maximum of the involved 

components to achieve high monetary efficiency.  

 S  = Sm ∙ u   

4 (6.8) 

 m  =  mm ∙ u  

 3 (6.9) 

 Ploss = Ploss,m ∙ u   3  (6.10) 

To find a proper-scaled inductor, the resistance and inductivity values of the equivalent 

circuit should approximately obey the scaling formulae (6.2). The copper and iron losses 

dominate the resistive behavior that has to be represented.  
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Copper losses describe the conduction losses within the windings of the inductor . The 

conduction losses can be further separated into the pure resistive conduction losses 

(Pr 
= I  

2RDC – same as skin effect at f = 0), and the skin- (Ps 
= FR( f   )   ∙ I  

 2
  ∙ RDC) and proximity 

effect (Pp 
= GR( f   )   ∙ H  

2
  ∙ RDC) [99]. However, for low-frequency applications, the pure 

resistive conduction losses without frequency dependency are a good representation.  

On the other hand, iron losses represent the losses within the core of the inductor. The iron 

losses can be further separated into hysteresis and eddy current losses (Ped 
∝ f      

2 ∙ | |B 2). For 

powdered core material, the hysteresis losses dominate the iron losses [99]. This assumption 

is also valid for laminated material for low-frequency applications [99]. 

The dissertation [99] shows that the hysteresis losses are well represented with the empirical 

Steinmetz Equation (6.11), where the parameters K, ,  are material parameters, and VFe 

is the volume of the core.  

 Ploss = VFe ∙ K ∙ f     

 ∙ | |B   (6.11) 

It should be noted that this work tries to simplify the loss effects to a first-order 

approximation. The main task of this chapter is to evaluate the feasibility of proper 

representation of scaled models and to identify critical limits. Other effects, such as the 

relaxation effect, are not considered. For a deeper analysis of inductive components and the 

loss effects, the interested reader should refer to [99]. 

Equivalent Circuit 

A good representation of the iron losses and copper losses as respective resistances has to 

be found to evaluate the influence and the validity of the scaled representation of the 

 

 PFe = IR
2
 ∙ RFe (6.12) 

 IR = I 
(L)2

 (L)2 + RFe
2
  

(6.13) 

 PFe  = I 
2 

RFe(L)2

(L)2 + RFe
2
 

(6.14) 
 

 

for f ≪ fn i.e. (L)2
 ≪ RFe:      PFe ∝ f     

2
 & PFe ∝ I     

2 ∝ B     

2 

Figure 6.7: First-order equivalent circuit for an inductor including iron and copper losses. 

The equations are valid for magnitude or RMS values. 
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inductor. The publication [98] utilizes the typical expression of the iron losses as parallel 

resistance and the copper losses as series resistance to the inductor (see Figure 6.7). 

A parallel RFe representation for the iron losses − (6.14) − does not match the Steinmetz 

Equation for every material. However, for  ≈ 2 and  ≈ 2, the equivalent circuit can be a 

proper representation within a specific frequency range. For good representation, the losses 

have to be a function of f 
2 and |B|2. The following is valid within the saturation limits of 

the magnetic material: B ∝ I (B = I ∙ L / A). Therefore, Figure 6.8 and (6.14) show that the 

frequency and magnetic flux criteria are met until the natural frequency of the parallel RL 

model (n = R / L). 

Scaling 

Figure 6.9 shows a schematic of a toroidal inductor with the physical parameters used in 

this section. Further, Figure 6.9 illustrates the utilized scaling factors ( – conductivity 

ratio, ni – current scaling, nu – voltage scaling,    Fe – core radius scaling,   w – conductor 

radius scaling,    N – number of windings scaling,    B – magnetic flux density scaling,    x – 

iron loss scaling to power scaling ratio,    lFe – core length scaling).  

The following section illustrates the scaling in power and the geometry options of a toroidal 

inductor. Toroidal inductors are not the predominant inductor architecture for high power 

applications. Further, the analysis is based on simplifications such as  = 2 and  = 2, and 

assumptions of similar inductor architecture with the same packing density of the windings 
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  Frequency f / fn  

Figure 6.8: Iron losses PFe( f ) over frequency for a parallel resistance representation (see 

Figure 6.7). Losses are normalized to the losses at the natural frequency fn. The frequency is 

normalized to fn. The losses feature a gradient of 2 decades per decade in the double logarithmic 

plot, i.e., a quadratic relationship until fn. 
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(thus lw ∝ 2 ∙ rFe ∙ N, resulting in lw 
/ lw.m =    Fe   N). However, this example still serves as 

a demonstrator for the scaling of inductive components and highlights critical limits. The 

following shows additional assumptions and the consequent scaling formulae for this 

example.  

The initial premise in this illustration procedure defines the scaling of the copper losses to 

be equal to the scaling of the apparent power: 

Pco

Pco.m
 = 

I
 

2

Im 
2  

Rco

Rco.m
 = 

ni   
2


 

lw

lw.m
 
Aw.m

Aw
 = 

ni   
2


 
 Fe N


 w   
2  = 

S

Sm
 = ni ∙ nu. (6.15) 

Induction Scaling:  

V

Vm
 =   N 




 m

 = nu (6.16) 

Magnetic flux density scaling: 

B

Bm
 =   B = 




 m

 
AFe.m

AFe
 = 

nu

NFe  
2  (6.17) 

Combining the copper loss scaling assumption (6.15) with the simple induction scaling 

(6.16), and the magnetic flux density scaling (6.17) yields: 

 

Figure 6.9: Longitudinal section and cross-section of a toroidal inductor. This figure defines 

the parameters used in section 6.1.3. 
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.ni =   Fe  w   
2
  B.  (6.18) 

Assuming the same frequencies (switching and fundamental), similar architecture, and the 

option of different magnetic flux density, the iron loss scaling can be derived as follows:  

          
PFe

PFe.m
 = 

VFe

VFe.m
 
B2

Bm   
2  = 

VFe

VFe.m
  B   

2
 = 

lFe

lFe.m
 

AFe

AFe.m
   B   

2
 = Fe  

2
  N  w =

(6.17)

  B  w  nu (6.19) 

Further, this example leaves different iron loss scaling options to apparent power scaling 

(  x  

). This discrepancy was necessary to find proper solutions, as shown in the calculation 

examples in the appendix subchapter 9.5. 

Iron Losses Condition: 

                   
PFe

PFe.m
 = 

S

Sm
   x =   B  w 

nu = x ∙ ni ∙ nu (6.20) 

.ni =   w  B  
     x. (6.21) 

Combining the copper loss scaling premises of (6.18) with the iron loss scaling assertion of 

(6.21) yields (6.22). 

   w  Fe =   x
─1.     (6.22) 

Scaling Calculation Example 

With (6.15) − (6.22), possible inductor scaling from a 5  W wind turbine to a 25 V test 

bench can be tested. A straightforward solution with perfect iron and copper scaling can be 

found in (6.15) − (6.22) using the same inductor and by keeping nu = ni.  

Using the same inductor of a 5  MW plant for a 25 V test bench is out of the scope of the 

intended project. Another solution with adequate scaling had to be found. A search 

algorithm was implemented to see different results for various boundary conditions 

regarding the physical volume and electrical parameters. The search algorithm aimed to 

minimize the core volume VFe and the iron losses (  x  

) within the defined restrictions. The 

boundary conditions and results for three examples are shown in the appendix 

subchapter 9.5. For the given test bench criteria of ni = 450 and nu = 27, an optimal solution 

with a core volume lowered by a factor of 84 but with increased iron losses by a factor of 

 (  x = 3 %) was found  

These numbers illustrate the difficulty in scaling for inductive components. The low-voltage 

test bench components become very resistive in comparison — the scaled example-inductor 

yields similar or even bigger iron losses than copper losses. In high voltage applications, 
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the iron losses of inductive components are commonly about an order of magnitude lower 

than the copper losses. 

Figure 6.10 illustrates the influence of higher relative iron losses for the equivalent circuit 

of Figure 6.7. This figure shows a much stronger damping of the LC resonance in case of 

iron losses in the same order of magnitude as the copper losses.  
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           ─ PFe = 0       ─  PFe = 0.33 ∙ Pco       ─ PFe = 0.66 ∙ Pco       ─ PFe = Pco 

Figure 6.10: Impedance characteristics of the LC-Filter of the parallel equivalent circuit (see 

Figure 6.7) for various iron losses (0 % − 100 % of the copper losses). The damping is 

significantly stronger for higher iron losses at the resonance since iron losses increase with 

frequency (PFe ∝ f     

2). 

 



 

6. Experimental Setup 

 

 

83 

 

 

 

 

A solution for future investigations for such test benches could be the implementation of air 

coils. These will have additional problems regarding stray fields and will increase in size 

significantly but feature zero iron losses.  

The calculation example assumed the same core material for the high-voltage and low-

voltage setups with the Steinmetz parameters  = 2 and  = 2. This assumption was 

necessary for the equivalent circuit to match the iron loss effect. In reality, modern core 

material features much lower Steinmetz parameters (iron powder cores with  = 1.15, ferrite 

cores with  = 1.24, and nanocrystalline cores with  = 1.69 – see Table A.2 in the appendix 

[100], [101]), especially for low-voltage core setups. Thus, the calculations and Figure 6.7 

firmly over exaggerate the increased damping effect in the low-voltage configuration. 

However, the illustrated problem is still valid and should be taken into account.  

Overall, the test bench was carefully designed to feature very low resistive components. 

Thus, the system′s resonance problem is still severe. Subchapter 6.3 illustrates these 

oscillation issues. Consequently, the experimental setup still holds validity for verifying the 

simulation results. The discussed issues remain an issue of low-voltage setups and will be 

part of future research. 

6.2. Control Implementation 

The control algorithm is implemented on the DSP Texas Instruments TMS320 and the 

FPGA Xilinx Spartan (XC3S1200E) (controller board – see Figure 6.2). The DSP code is 

written directly in the software environment C via the Code Composer Studio by Texas 

Instruments. The FPGA is coded in HDL using the software environment Xilinx ISE.  

The FPGA handles the sampling of the measurement signals. Further, the FPGA receives 

the reference voltages from the DSP and carries out the PWM. Finally, the FPGA sends the 

half-bridge signals through isolation chips toward the gate drivers of the inverter ( inverter 

board – see Figure 6.3). 

The DSP obtains the measurement signals from the FPGA and executes the entire control 

structure, including the observers. Additionally, the DSP manages the over-voltage and 

over-current protection and the start-up (pre-charge of DC-Link and filter, PLL-

convergence, etc.) and turn-off procedures.  



 

6. Experimental Setup 

 

 

84 

 

 

 

 

Control Flowchart – Control Interrupt 

Figure 6.11 illustrates the flowchart of the control algorithm on the DSP. At the start of each 

interrupt, the measured values and the reference voltages are updated on the FPGA-DSP 

bus. Since the PLL is used to estimate the future angle (see Figure 6.13), the PLL does not 

execute at the beginning of the code. Instead, the new PLL runs when values of the future 

 

Figure 6.11: Flowchart of the DSP control interrupt. The observer and control structures are 

shown in more detail in Figure 5.3 and Figure 5.4. Polar limitation is held out twice – also for 

observers, but for clarity shown only once in this figure. 
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time instance k + 1 are needed for the delay compensation via the back-transformation with 

the future angle (Block 8). The order of execution of the different observer instances is vital 

to avoid algebraic loops. Since iĜ
^ [k  + 1]and iĜ̂

^
[k  + 2] are needed for future time instances of 

vinv, estimates have to be used, as shown in Figure 5.4. 

Control Flowchart – Start-Up 

Figure 6.12 shows the flowchart of the start-up procedure. The test bench uses a DC-source 

connected to the DC-link at this stage. Thus, a pre-charge resistor is implemented.  

After fully charging the DC-link, a contactor bypasses this pre-charge resistor. Similar, the 

filter capacitors will be pre-charged and bypassed after 4  s, as shown in Figure 6.1. 

Bypassing this pre-charge resistor excites the resonance. Thus, the resistance value should 

 

 

Figure 6.12: Flow-chart of the start-up procedure of the LCL test bench. The test bench utilizes 

pre-charge resistors for the charging of the DC-Link and the grid filter capacitors. During the 

start-up, the observers are running with vinv = vC and Rvir = 0. 
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not exceed certain limits. The value of this pre-charge resistor has been evaluated via 

simulation, as shown in the appendix subchapter 9.4. 

After the pre-charging, the system will wait for the PLL and the observers to converge 

before activating the PWM. During this wait time, the inverter is not active, and thus no 

damping via any control means occurs. Therefore, the active damping coefficient Rvir is set 

to zero within the observers during this period.  

  

 

 

Figure 6.13: State block diagram of the discrete PLL implemented on the test bench. The PLL 

uses asin(u) and VG 
^  −1

 to decouple the nonlinearities of the Park-Transformation. 
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6.3. Measurement Results 

This subchapter presents the command tracking plots from the test bench. Figure 2.9 

illustrates the access to a virtual disturbance to extract dynamic stiffness plots from a first-

order RL-load. However, this technique does not apply to the second-order LC filter 

problem. A disturbance source must be installed to evaluate the simulation results regarding 

the impedance seen from the grid. Future projects plan to introduce multiple inverters into 

the test bench. These inverters should operate simultaneously to evaluate the parallel 

operation. Further, additional inverters can be used as a disturbance source to extract 

dynamic stiffness plots. However, the test bench currently provides only command tracking 

frequency response estimation plots.  

The grid impedance of the laboratory setup is unknown. Thus, the simulation plots are not 

exact replicas, but the experiments of this subchapter yield similar attributes and trends. 

Future work includes both simulation and experimental work to estimate the full-state model 

of the system more accurately to reproduce the experimental results more closely.   
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Figure 6.14: Measurement: Command tracking FRF for different active damping coefficients 

of the discrete current controller for the LC-topology on the test bench setup (w/ computational 

delay, 3 kHz singe-sampling) using a deadbeat-based cascaded discrete Luenberger-style 

observer structure (see Figure 5.3 and Figure 5.4) for estimation of present and future state-

information for the grid-current, inverter-current, and capacitor-voltage.…. 
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The test setup utilizes both single- (3 kHz) and double-sampling (6 kHz). With single-

sampling, the control was too oscillatory without active damping to find any working 

operating point. This instability was already present in the simulations, as described in 

subchapter 4.2.2. 

Single-Sampling 

Figure 6.14 shows the command tracking plot for different damping coefficients for single-

sampling (3 kHz switching and 3 kHz sampling). Figure 6.15 (left) shows the peak of the 

resonant of the command tracking behavior and the respective frequency for different Rvir. 

This resonant behavior can be damped via active damping.  

Figure 4.5 and Figure 4.6 of subchapter 4.2.1 illustrated this behavior with pole-zero plots. 

With increasing damping factor, the resonant frequency increases slightly, as well. 
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Figure 6.15: For 3 kHz single-sampling: Left: Measurement: Left-Top: Oscillatory peak in the 

command tracking FRF over the damping coefficient Rvir, Left-Bottom: Frequency of the 

oscillatory peak in the command tracking FRF over the damping coefficient ─ 

Right: Simulation: Command tracking FRF with reduced grid-impedance by one order of 

magnitude – similar behavior to measurements achieved – see Figure 6.14. 
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Figure 4.5 further shows that over-damping will also yield instability. This over-damping 

issue was also present during the experiment and can be seen in Figure 6.14.  

A lower damping coefficient was optimal in the test bench compared to the simulation 

results. Further, the resonant behavior was not present in the simulation. Closer inspections 

suggested that the potentially most significant difference between simulation and the 

hardware example was the grid impedance. 

The lab′s grid connection is an order of magnitude stronger than the original wind turbine 

application. This strong grid example seems unrealistic for the given application. However, 

the effect should be investigated further. Figure 6.15 (right) shows similar attributes in 

simulations with much smaller grid impedances. As described in subchapter 4.2.1, the 

location of the EVs depends on the grid impedance. These grid impedances can change over 

time, but most applications should not drastically change in order of magnitude.  

Figure 6.16 (left) shows the eigenvalue movement for the variation in grid impedances. 

Further, Figure 6.16 (right) shows that lower damping coefficients yield stronger relative 

eigenvalue movement for a low grid impedance. In this case, over-damping and instability 

happen much sooner than in the weaker grid example. 

To summarize, the order of magnitude of the grid impedance also dictates the order of 

magnitude for effective damping coefficients. Therefore, in the case of grid-impedances 
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Figure 6.16: Left: eigenvalue movement of the LC-plant for decreasing grid impedance (LG); 

Right: eigenvalue movement for increasing Rvir for two cases of grid impedances (low and 

normal) – the plots are for 3  kHz single-sampling. 
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varying in large regions, adaptive tuning of the damping coefficients could guarantee 

stability and well-behaved dynamic attributes for the proposed control scheme.  

Double-Sampling 

Figure 6.17 shows the command tracking plot of the test bench for double-sampling (6 kHz) 

with and without active damping. Similar to the simulation results in Figure 3.7 of 

subchapter 3.2, well-behaved command tracking attributes can be observed without 

damping.  

Figure 3.7 reveals that command tracking attributes are not affected negatively without 

active damping in the case of fast sampling (continuous as an extreme example). However, 

resonant properties still occur regarding the impedance seen from the grid (see Figure 3.7). 

Thus, active damping is implemented, and the tracking dynamics remain well behaved. 

Figure 6.17 shows the same behavior for command tracking on the test bench. 
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                  ─*─   w\ active damping: Rvir = 150  m              …*…   w\o active damping 

Figure 6.17: Measurements: Command tracking FRF with and without active damping of the 

discrete current controller for the LC-topology on the test bench setup with double-sampling 

(w/ computational delay, 6 kHz double-sampling) using a deadbeat-based discrete Luenberger-

style observer structure for estimation of the future state information of the inverter current. 
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Figure 6.18 shows the time domain plot of the /-currents comparing double- and single-

sampling. The visible harmonics in the single-sampling case are mainly the – 2nd and 4th 

harmonics caused by the PWM. As described in subchapter 5.2.1, these harmonics get 

mitigated in case of double sampling. 

6.4. Interpretation and Limits of the Measurements 

The measurements of subchapter 6.3 exhibit the effectiveness of the proposed control 

scheme. However, the FRFs of the test bench do not perfectly match the simulation results. 

Multiple effects will be discussed in this subchapter: 

➢ Sampling 

➢ Grid-impedance / resonance 

➢ Loss-effects 

Sampling 

Subchapter 5.2.1 describes sampling issues for the voltage measurement. The current 

waveform dictates the standard sampling timing on inductive loads. Consequently, the 

sampling occurs during the extrema of the PWM carrier signal. This yields magnitude and 

angle errors for the voltage measurement, depending on the grid impedance. These angle 

and magnitude errors also yield discrepancies between the sampled currents and voltages. 

Consequently, the observers become slightly inaccurate, as well. 
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Figure 6.18: Measurements: Time domain plot of the  inverter currents with the proposed 

current control scheme for 6 kHz double-sampling on the left and for 3 kHz single-sampling on 

the right. 
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This issue could be tackled by an improved sampling scheme (sampling between extrema), 

which would decrease the available computation time. Another solution is faster sampling, 

reducing the available computation time and increasing the switching frequency (if double-

sampling is insufficient).  

Grid Impedance / Resonance 

While the control algorithm itself does not need grid-impedance information, the order of 

magnitude of the grid-impedance still affects the eigenvalues, the resonant point, and, 

consequently, the same design choices. Subchapter 6.3 describes the influence of the grid-

impedance on the eigenvalue movement and the consequent effect of the virtual impedance. 

For a highly varying grid-impedance, the control design and its parameters must be dynamic 

regarding these changes. This approach seems inevitable if increasing the sampling 

frequency is not an option. 

Increasing the sampling frequency decreases phase and delay issues and improves the 

observers' performance and the current control scheme. Chapter 5 and subchapter 6.3 

illustrate these advantages with the double-sampling technique. 

The proposed algorithm cannot be applied to every possible type of grid impedance. The 

resulting resonance must stay well below the sampling frequency. Otherwise, the voltage 

drop of the virtual impedance cannot be modulated by the PWM. Further, small resonant 

eigenvalues will yield a slower possible current control (has to be below resonant frequency) 

and cause issues as described in subchapter 6.3 (inconvenient eigenvalue locations – see 

Figure 6.16). 

Future work should include proper grid-impedance estimation. While too weak grids cannot 

be compensated for, too strong grids can be adjusted by implementing more impedance 

behind the filter. 

Loss-Effects 

Subchapter 6.1 illustrates the issues of the scaling invariant components for a low-voltage 

test bench. The iron loss influence and damping attributes, for instance, are difficult to 

describe. The parallel RFe model (subchapter 6.1.3) is inaccurate to describe this 

phenomenon, let alone can be adequately scaled into available low-voltage components. 

However, this first-order approach serves as a simplified model to give physical insights 

into the scaling issue. However, the presented obstacles are exaggerated due to the 

simplified model. Theoretically, a design that results in similar damping attributes for a 
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specific frequency can be achieved but will fail to represent the original setup over a wide 

range of frequencies.  

Summary 

The validity of the damping results of low-voltage test benches is limited regarding passive 

damping attributes. However, this work carefully designed the passive components of the 

test bench to yield low resistivity. Thus, the results still show strong resonant behavior. The 

test bench can evaluate the effectiveness of the active damping from a command tracking 

perspective but lacks an external disturbance source to assess the simulation results 

regarding dynamic stiffness (impedance seen from the grid). Further work should 

investigate the grid impedance and adjust for too strong grids by implementing additional 

impedance. 

Most of the described limits can be solved via faster sampling. The results of the given 

applications suggest that the double-sampling technique suffices to achieve an excellent 

outcome.  
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7. Conclusion 

This work demonstrates the systematic LC current control design approach starting from 

the continuous LC-resonant phenomenon and a consequent continuous design idea to an 

algorithm implemented on a discrete DSP/FPGA-based system. Furthermore, the design 

choices are closely linked to the impedance seen from the grid (dynamic stiffness), as this 

metric provides the most significant insight as to whether actual damping is provided to the 

overall system.  

The simulation and experimental results illustrate that the proposed active damping scheme 

provides vital and dynamically well-behaved damping attributes. However, each step in 

complexity, from the continuous domain approach to the discrete domain approach to the 

implementation space, introduces various identified and solved issues in the respective 

chapters. 

Chapter 4 demonstrates a cohesive discrete modeling approach. This chapter introduces a 

new modeling approach for a reduced state-vector model due to the position of the sensors 

for the LC-topology (measurement of inverter current and capacitor voltage; control of 

inverter current). 

Further, issues of the implementation space, such as the computational delay, are 

introduced. This work proposes a discrete Luenberger-style observer structure to estimate 

the capacitor current. Further, chapter 5 presents a cascaded observer structure to estimate 

future states for delay compensation. 

Finally, the work describes the design of a low-voltage laboratory setup. The scaling of the 

original components is expressed vigorously. Chapter 6 shows how to scale the passive 

components and the proper representation of the IGBT with adjusted MOSFETs. The gate 

signals of the MOSFETs had to be modified to show similar voltage flanks and dead times. 

The experimental results are the basis of evaluation for the design and simulation of the 

previous chapters. 

The simulation and experimental results display very effective damping of the LC resonance 

without information on the grid-impedance. However, the algorithm's limits, including the 

influence of the grid-impedance, are lined out in subchapter 6.4. 
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Borwin 1 Showcase 

To get an idea of whether this method would have prevented the Borwin 1 accident, some 

assumptions must first be made. The first assumption is that the damage was caused by 

overheating damping resistors of the LC-filter of the wind turbines. Secondly, the design 

comparison assumes the same LC-filter parameters as presented in this thesis. Further, the 

dimensioning of the damping resistor presumes an optimal damping coefficient of  = 1/ 2

as shown in [78, 102]. Equation (7.1) illustrates the transfer function of the LCL [78]. 

Consequently, (7.2) shows the dimensioning for the damping resistor Rd for a given 

damping coefficient . For the parameters of Table A.1, this results in a damping resistor of 

78 m. 

I(s)

 V(s)
 = 

1

Ls
 









s2 + 
Rd

LG
 s + 

1

C ∙ LG

s2 + 
( )L + LG  ∙ Rd

L ∙ LG
 s +  Res 

2

 = 
1

Ls
 









s2 + 
Rd

LG
 s + 

1

C ∙ LG

s2 + 2 Res ∙ s +  Res 
2  (7.1) 

Rd = 
2

 C ∙  Res
 = 

2

 C ∙  Res
 = 78 m. (7.2) 

A disturbance from the grid yields the strongest current reaction through the damping 

resistor at the LC-resonance 
 r seen from the grid. The effective impedance at that 

frequency is the damping resistor Rd. The nominal current through the damping resistor irn 

can be approximated via the nominal grid voltage vn (in root mean square): 

irn = 
vn

 C ∙ 2 ∙ 50
 = 0.77 ∙ vn. (7.3) 

The approximated nominal power in each resistor prn that has to be dissipated and cooled 

accordingly is: 

prn = irn
2 ∙ Rd = 0.6 ∙ Rd ∙ vn

2
 = 7.4 kW (7.4) 

The additional losses from a disturbance voltage vd at the LC-resonance seen from the grid 

can be calculated as follows: 

pres = 
vd

2

Zd 
( = 

 r)
 = 

vd
2

Rd
 = 12.9 ∙ vd

2. (7.5) 

Assuming the resistor and its cooling can withstand total losses of ntot ∙ prn, the disturbance 

voltage vd has to obey the following to avoid destruction: 



 

7. Conclusion 

 

 

96 

 

 

 

 

vd < 
2 ∙ ( )1 – ntot

C2 ∙ 2 ∙ 50 ∙  Res

 vn = 0.77 ∙ Rd ∙ 1 – ntot  ∙ vn = 0.06 ∙ 1 – ntot  ∙ vn (7.6) 

If the resistor and its cooling were designed to withstand up to 130  % of the nominal power 

prn (9.6 kW), the disturbance voltage could not exceed 3.3 % of the nominal grid voltage. 

The current through the damping resistor would be 168 A at the breaking point.  

Figure 5.11 shows the effective impedance seen from the grid over a wide frequency range. 

At the resonance point, the impedance is somewhere between 70  m and 80 m which is 

very close to the optimal passive damping resistor Rd. However, the resonant frequency seen 

from the grid depends on the grid impedance and thus could be lower. At lower frequencies, 

the harmonic impedance (Figure 5.11) drops down to 25 m. Therefore, the active damping 

case could result in a similar current reaction at higher frequencies of approximately 170 A 

or up until 530 A at lower frequencies. Nevertheless, the resonant current is not dissipated 

in a damping resistor. It thus will not lead to overheating or any other failure mechanism 

unless other passive components cannot withstand the additional current.  

Future Work 

Future work should focus on implementing a disturbance source to evaluate dynamic 

stiffness plots for the experimental setup. This setup can be another similar inverter but with 

a much higher sampling and switching frequency to allow quasi-continuous FRFs, which is 

crucial for the correct phase interpretation for passivity analysis. Further, this setup or the 

disturbance source must be bidirectional in power flow for such measurements. Thus, the 

arrangements should be designed as a back-to-back configuration.  

Additional investigations regarding the grid-impedance of the laboratory setup would help 

match the application's original grid strength. In the case of a strong laboratory grid, the 

grid impedance has to be increased via additional impedances. 
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9. Appendix 

TABLE A.1  

PARAMETERS OF THE ORIGINAL SETUP AND THE SCALED TEST BENCH REPRESENTATION 

Parameter 5 MW Wind Turbine 25 V Lab test bench 

Lf  –  filter inductance 25 H 379 H (400 H intended) 

Rf  –  filter resistance 0.3 m 17.8m (5 m intended) 

Cf  –  filter capacitance 4 mF 200 F 

VDC –  DC-link voltage 1100 V 40 V 

VG  –  grid voltage 690 V 25 V 

IN  –  base current 4500 A 10 A 

CDC – DC-link capacitance 92 mF 5.52 mF 

fsw  –  switching frequency 3 kHz 3 kHz 

tdead – dead time (half 

  bridge switching) 

appr. 2 s 

 

appr. 2 s 

 

Switches 
1.7 kV Trench/Fieldstop 

IGBT 4 

100 V HEXFET Power 

MOSFET 

 

  



9. Appendix 

 

 

105 

 

 

 

 

9.1. Full-State Discrete LCL Model and Transfer Function Coefficients 

Coefficients for the full-state discrete LCL model of (4.17) and (4.18): 

 = eATs = 
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C1 =  inv1 

C2 = – Rvir ∙  inv1 ∙  inv3 –  inv1 ∙  22 – 2 ∙  inv1 ∙  33 +  inv2 ∙  12 +  inv3 ∙  13 

C3 = Rvir ∙  inv1 ∙  inv3 ∙  22 + Rvir ∙  inv1 ∙  inv3 ∙  33 – Rvir ∙  inv2 ∙  inv3 ∙  12  

  – Rvir ∙  inv3
2 ∙  13 + 2 ∙  inv1 ∙  22 ∙  33 –  inv1 ∙  23 ∙  32 +  inv1 ∙  33

2– 2 ∙  inv2 ∙  12 ∙  33  

  +  inv2 ∙  13 ∙  32 +  inv3 ∙  12 ∙  23 –  inv3 ∙  13 ∙  22 –  inv3 ∙  13 ∙  33 

C4 =  inv1 ∙  23 ∙  32 ∙  33 –  inv2 ∙  13 ∙  32 ∙  33 –  inv3 ∙  12 ∙  23 ∙  33  

  +  inv3 ∙  13 ∙  22 ∙  33 –  inv1 ∙  22 ∙  33
2 +  inv2 ∙  12 ∙  33

2 – Rvir ∙  inv3
2∙  12 ∙  23  

  + Rvir ∙  inv3
2 ∙  13 ∙  22 – Rvir ∙  inv1 ∙  inv3 ∙  22 ∙  33 + Rvir ∙  inv1 ∙  inv3 ∙  23 ∙  32  

  + Rvir ∙  inv2 ∙  inv3 ∙  12 ∙  33 – Rvir ∙  inv2 ∙  inv3 ∙  13 ∙  32 

D1 = Rvir ∙  inv1 – 2 ∙ Rvir ∙  inv3 –  11 –  22 – 2 ∙  33 

D2 = –Rvir
2 ∙  inv1 ∙  inv3+ Rvir

2 ∙  inv3
2 – Rvir ∙  inv1 ∙  22 – Rvir ∙  inv1 ∙  31  

  – 2 ∙ Rvir ∙  inv1 ∙  33 + Rvir ∙  inv2 ∙  12 – Rvir ∙  inv2 ∙  32 + 2 ∙ Rvir ∙  inv3 ∙  11  

  + Rvir ∙  inv3 ∙  13 + 2 ∙ Rvir ∙  inv3 ∙  22 + 2 ∙ Rvir ∙  inv3 ∙  33 +  11 ∙  22 + 2 ∙  11 ∙  33  

  –  12 ∙  21 –  13 ∙  31 + 2 ∙  22 ∙  33 –  23 ∙  32 +  33
2 

D3 = Rvir
2 ∙  inv1 ∙  inv3 ∙  22 + Rvir

2 ∙  inv1 ∙  inv3 ∙  31 + Rvir
2 ∙  inv1 ∙  inv3 ∙  33  

  – Rvir
2 ∙ 

 inv2 ∙  inv3 ∙  12 + Rvir
2 ∙  inv2 ∙  inv3 ∙  32 – Rvir

2 ∙  inv3
2 ∙  11 – Rvir

2 ∙  inv3
2 ∙  13  

  – Rvir
2 ∙ 

 inv3
2 ∙  22 – Rvir ∙  inv1 ∙  21 ∙  32 + Rvir ∙  inv1 ∙  22 ∙  31 + 2 ∙ Rvir ∙  inv1 ∙  22 ∙  33 

  – Rvir ∙ 
 inv1 ∙  23 ∙  32 + Rvir ∙  inv1 ∙  31 ∙  33 + Rvir ∙  inv1 ∙  33

2 + Rvir ∙  inv2 ∙  11 ∙  32  

  – Rvir ∙  inv2 ∙  12 ∙  31 – 2 ∙ Rvir ∙  inv2 ∙  12 ∙  33 + Rvir ∙  inv2 ∙  13 ∙  32  

  + Rvir ∙  inv2 ∙  32 ∙  33 – 2 ∙ Rvir ∙  inv3 ∙  11 ∙  22 – 2 ∙ Rvir ∙  inv3 ∙  11 ∙  33  

  + 2 ∙ Rvir ∙  inv3 ∙  12 ∙  21 + Rvir ∙  inv3 ∙  12 ∙  23 – Rvir ∙  inv3 ∙  13 ∙  22  

  + Rvir ∙  inv3 ∙  13 ∙  31 – Rvir ∙  inv3 ∙  13 ∙  333 – 2 ∙ Rvir ∙  inv3 ∙  22 ∙  33  

  + Rvir ∙  inv3 ∙  23 ∙  32 – 2 ∙  11 ∙  22 ∙  33 +  11 ∙  23 ∙  32 –  11 ∙  33
2 + 2 ∙  12 ∙  21 ∙  33  

  –  12 ∙  23 ∙  31 –  13 ∙  21 ∙  32 +  13 ∙  22 ∙  31 +  13 ∙  31 ∙  33 –  22 ∙  33
2 +  23 ∙  32 ∙  33 

D4 = – 11 ∙  23 ∙  32 ∙  33 +  12 ∙  23 ∙  31 ∙  33 +  13 ∙  21 ∙  32 ∙  33 –  13 ∙  22 ∙  31 ∙  33  

  – Rvir ∙  inv3 ∙  11 ∙  23 ∙  32 – 2 ∙ Rvir ∙  inv3 ∙  12 ∙  21 ∙  33 + Rvir ∙  inv3 ∙  12 ∙  23 ∙  31  

  – Rvir ∙  inv3 ∙  12 ∙  23 ∙  33 + Rvir ∙  inv3 ∙  13 ∙  21 ∙  32 – Rvir ∙  inv3 ∙  13 ∙  22 ∙  31  

  + Rvir ∙  inv3 ∙  13 ∙  22 ∙  33 + Rvir
2 ∙  inv1 ∙  inv3 ∙  21 ∙  32 – Rvir

2 ∙  inv1 ∙  inv3 ∙  22 ∙  31  

  – Rvir
2 ∙  inv1 ∙ 

 inv3 ∙  22 ∙  33 + Rvir
2 ∙  inv1 ∙  inv3 ∙  23 ∙  32 – Rvir

2 ∙  inv2 ∙  inv3 ∙  11 ∙  32 

  + Rvir
2 ∙  inv2 ∙  inv3 ∙  12 ∙  31 + Rvir

2 ∙  inv2 ∙  inv3 ∙  12 ∙  33 – Rvir
2 ∙  inv2 ∙  inv3 ∙  13 ∙  32 

  + Rvir ∙  inv1 ∙  21 ∙  32 ∙  33 – Rvir ∙  inv1 ∙  22 ∙  31 ∙  33 + Rvir ∙  inv1 ∙  23 ∙  32 ∙  33  

  – Rvir ∙  inv2 ∙  11 ∙  32 ∙  33 + Rvir ∙  inv2 ∙  12 ∙  31 ∙  33 – Rvir ∙  inv2 ∙  13 ∙  32 ∙  33  

  + 2 ∙ Rvir ∙  inv3 ∙  11 ∙  22 ∙  33 + Rvir
2 ∙  inv3

2 ∙  11 ∙  22 – Rvir
2 ∙  inv3

2 ∙  12 ∙  21  

  – Rvir
2 ∙  inv3

2 ∙  12 ∙  23 + Rvir
2 ∙  inv3

2 ∙  13 ∙  22 – Rvir ∙  inv1 ∙  22 ∙  33
2  

  + Rvir ∙  inv2 ∙  12 ∙  33
2 –  12 ∙  21 ∙  33

2 +  11 ∙  22 ∙  33
2 (A.2) 
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9.2. Dynamic Plots 

 

                           A,B 

   C,D,E 
 

  

─ A A & B 
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Figure 9.1: Closed-loop current control command tracking plots of the LC-filter plant with 

various decoupling techniques: A – decoupling cross-coupling state feedback, B – full 

decoupling state feedback, C – disturbance input decoupling for the grid current, 

D – disturbance input decoupling for the capacitor voltage, and E – active damping 

implementation; y-axis is the d-current reference over measurement, x-axis is the 

frequency in Hz. Crossed-out sections did not yield stable operation. 
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Figure 9.2: Closed-loop dynamic stiffness plot of the LC-filter plant with various decoupling 

techniques: A – decoupling cross-coupling state feedback, B – full decoupling state feedback, 

C – disturbance input decoupling for the grid current, D – disturbance input decoupling for the 

capacitor voltage, and E – active damping implementation; y-axis is the d-component of the 

disturbance voltage over the measured d-axis current in , x-axis is the frequency in Hz. 

Crossed-out sections did not yield stable operation. 
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9.3. Additional Block-Diagrams 

Non-complex decoupling techniques for continuous current control with plant:  

 

 

Figure 9.3: Control techniques with active damping for the LC-topology with voltage 

decoupling (DID – red) and virtual resistor implementation (Rvir – orange).… 
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Non-complex decoupling techniques for discrete current control: 

 

 
Figure 9.4: Decoupling techniques of the dq-current cross-coupling: a) continuous 

decoupling cross-coupling via active state feedback (DCCSFb) [26], b) continuous pole-

cancelation via complex zero in the forward path [26], c) discrete decoupling cross-coupling 

(DCCSFb) w/ MID – Manipulated Input Decoupling [23] (connected to this work), d) discrete 

pole-cancelation via complex zero in the forward path [19]. The complex representation is 

shown in Figure 2.6. 
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Complex-formated and more compact representation of the overall control design with active 

damping and delay compensation via observers: 

 

 
Figure 9.5: Block diagram of the current control structure with delay compensation via a 

cascaded Luenberger-style observer structure with active damping implementation and 

decoupling techniques: DCCSFb – Decoupling Cross-Coupling State Feedback, 

DID – Disturbance Input Decoupling (index: vc – capacitor voltage, ig – grid-current). A non-

complex and more detaild version is displayed in Figure 5.4. 
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9.4. Simulation for the Pre-charge Resistor 

Figure 9.6 shows the test results of the simulation of the start-up with pre-charge resistors 

for the filter capacitor. Using a very low pre-charge resistor (0.5 ) leads to roughly 1.5 

times nominal current and voltage. The over-current would most likely not damage any 

components. However, the over-voltage could potentially charge up the DC-link. The 

critical limit of the DC-link voltage is the breakdown voltage of the transistors, which can 

be well below 1.5 times the nominal value. Choosing a very high resistance for the pre-

charge, on the other hand, will excite the resonance too strongly after the bypassing, which 

yields two times nominal current and voltage in the case of 50  . The optimal resistance 

(approx. 5  for the test bench) keeps all overshoots in a tolerable band. 

 

i G
(t

)  
in

 A
 

 

 v
C

(t
)  

in
 V

 

 
  Time in ns  Time in ns 

─ RPre = 0.5       ─ RPre = 5       ─ RPre = 50   

Figure 9.6: Simulation: Pre-charge resistor iterative test for the start-up. The contactor 

bypasses the pre-charge resistor at t = 0.02 s. RPre = 5  leads to the lowest overshoots for 

voltage and current within a tolerable band.      
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9.5. Optimization Algorithm Example for Inductor Scaling 

1. Search for Minimum of VFe.m ∙   x 

With limits:: lFe < 30, N < 21,  Fe = 4 .. 16, W = 4 .. 50, ni = 450 .. 1900, nu = 27 

Results: Fe = 4, W = 16, ni = 670 (Id = 6.7 A), & nu = 27 (Vd = 25 V) 

→  lFe = 26   x = 41  

➔ lFe = 6.cm, rFe = 4.cm, rW = 1.5.mm, N = 12  

 

2. Search for Minimum of VFe.m ∙   x 

With limits: lFe < 30, N < 21, Fe = 4 .. 16, W = 4 .. 50, ni = 450 .. 1900, nu = 27 .. 50 

Results: Fe = 4, W = 13, ni = 480 (Id = 9.4 A), & nu = 40 (Vd = 17 V)  

→  lFe = 30   x = 34  

➔ lFe = 5.cm, rFe = 4.cm, rW = 1.8.mm, N = 9  

 

3. Search for Minimum of VFe.m ∙   x 

With limits: lFe < 30, N < 21, Fe = 4 .. 16, W = 4 .. 50, ni = 450, nu = 27 

Results: Fe = 4, W = 13, ni = 470 (Id = 10 A), & nu = 27 (Vd = 25 V)  

→  lFe = 21   x = 34  

➔ lFe = 7.2.cm, rFe = 4.cm, rW = 1.8.mm, N = 13   



9. Appendix 

 

 

114 

 

 

 

 

9.6. Steinmetz Parameters of Magnetic Material  

RTP – iron powder 

RTF – ferrite 

RTN – nanocrystalline 

TABLE A.2 

 VALUES OF EXAMPLE STEINMETZ PARAMETERS 

Core material RTP RTF RTN 

Source / type (-26) 

[100]  

[101] F867 

[100] 

[101] M-070 

[100] 

[101] 

K [W ∙ s
 / T

 / m3] 103 103 10.76 2.76 2 0.05 

 1.15 1.15 1.24 1.24 1.69 1.69 

 2.07 2.07 2.28 2.28 2.2 2.2 

➢ RTN low losses at low frequencies 

➢ RTP and RTF better at higher frequencies 

➢ RTP has lower losses at extremely high frequencies 

Iron loss scaling from RTN to RTF for example of source [100]: 

 
PFe.RTN

PFe.RTF
 = 

VFe.RTN

VFe.RTF
 ∙ 

KFe.RTN

KFe2.RTF
 ∙ f  RTN −  RTF ∙ B  RTN −  RTF (A.3) 

At resonance (1 kHz): 

 
PFe.RTN

PFe.RTF
 = 4.16 ∙ 

VFe.RTN

VFe2.RTF
 B − 0.08 (A.4) 

For the same volume: 

 
PFe.RTN

PFe.RTF
 = 4.16 ∙ B − 0.08 (A.5) 

 For B  < 55 MT: PFe.RTN > PFe.RTF
 (A.6) 

Iron loss scaling at resonance (1  kHz) from RTF to RTP for example of source [100]: 

 
PFe.RTF

PFe.RTP
 = 

VFe.RTF

VFe.RTP
 ∙ 

KFe.RTF

KFe2.RTP
 ∙ f  RTF −  RTP ∙ B  RTF −  RTP (A.7) 

At resonance (1 kHz): 
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PFe.RTF

PFe.RTP
 = 0.1934 ∙ 

VFe.RTF

VFe.RTP
 B 0.21 (A.8) 

For the same volume: 

 
PFe.RTF

PFe.RTP
 = 0.1934 ∙ B 0.21 (A.9) 

 For B  > 2.5 kT: PFe.RTF > PFe.RTP
 (A.10) 

Iron loss scaling at resonance (1  kHz) from RTN to RTP for example of source [100]: 

 
PFe.RTN

PFe.RTP
 = 

VFe.RTN

VFe.RTP
 ∙ 

KFe.RTN

KFe2.RTP
 ∙ f  RTN −  RTP ∙ B  RTN −  RTP (A.11) 

At resonance (1 kHz): 

 
PFe.RTN

PFe.RTP
 = 0.81∙ 

VFe.RTN

VFe.RTP
 B 0.13 (A.12) 

For the same volume: 

 
PFe.RTN

PFe.RTP
 = 0.81 ∙ B 0.13 (A.13) 

 For B  > 5 T: PFe.RTN > PFe.RTP
 (A.14) 

These materials have saturation limits between 500  mT to 1.5 T. Further, the harmonics at 

high frequencies due to switching and resonances do not feature magnetic flux density 

values of the same order of magnitude as the fundamental 50  Hz. Thus, much lower B is 

expected. Therefore, RTFs feature the lowest damping at the resonant frequency. RTPs 

feature lower losses (damping) at these high frequencies than RTNs. 
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9.7. Additional Experimental Setup Pictures 

 

 1  – Inverter board stacked 

 on controller board 

4  – transformer 7  – voltage power supply 

 2  – current measurement 5  – pre-charge resistor for 

 filter-C 

8  – contactor and MCB 

 (protection) 

 3  – voltage measurement 6  –  contactor and pre-charge 

 resistor for DC-link 

 

Figure 9.7: Picture of the laboratory scaled 25  V low-power test bench – inverter, controller, 

and peripherals. 
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 1  – Oscilloscope 2  – inverter, controller, and 

 peripherals (Figure 9.6) 

3  – Filter capacitors 

 4  – Filter inductors   

Figure 9.8: Picture of the entire laboratory scaled 25  V low-power test bench 

(see Figure 6.1).  
 



9. Appendix 

 

 

118 

 

 

 

 

9.8. Reference Paper Active Damping – Gap in Literature 

TABLE A.3 

 REFERENCE PAPER FOR ACTIVE DAMPING (ANALYSIS OF GAPS/ISSUES) 

 
fR(kHz) fs(kHz) fs/fR 

SFb-

based 

Forward-

path 

Modelling 

technique 

Delay 

modelling 

Delay 

comp. 

Experi-

ment 

[7] 1.22 3.5/5/7 4 – 2 no 
Notch-

Filter 

quasi-

continuous 

+ discrete 

yes no yes 

[10] ? ? ? ic no 
quasi-

continuous 
no no no 

[14] 
0.3 -

0.35 
5 14.2 

HPF   

vc 
no 

quasi-

continuous 
no no no 

[18] 2.96 12 
4.1 ∙ 

2 

iinv 

∙Glead 

∙Gad(s) 

no 
quasi-

continuous 
yes yes yes 

[9] 3.3 12.8 3.8 iinv no 
Discrete 

(approx.) 
yes no yes 

[5] Damping resistor turned on & off (8 Diodes and 1 or 2 Switches) 

[17] 0.71 3 4.2 no 
Resonant 

Control 

quasi-

continuous 
no no no 

[15] 1.8 5 3.8 
HPF   

vc 
no 

quasi-

continuous 
yes no yes 

[8] 3.5 10 2.8 ic 
Notch-

Filter 

quasi-

continuous 
no no yes 

[4] Passive resistor for damping 

[13] 3.5 20 5.7 ic no 
quasi-

continuous 
no no no 

[12] 7 20 2.8 no 
Notch-

Filter 

quasi-

continuous 
no no no 

[6] 1.4 10 7.1 
ic  

(obs.) 
no 

quasi-

continuous 
yes no no 

[16] 7 ? ? 
ic, 

vc,lag 
no 

quasi-

continuous 
no no no 
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Theses 

1. The LCL resonance plant can be actively damped without information of the grid 

impedance within certain limits 

2. Proper phase information of the states of the plant are of the essence. Otherwise the 

active damping will not be effective. Filtering and delays in the system distort the 

phase information significantly. 

3. Observers can be utilized to compensate for delays. 

4. The modelling and control design in the continuous domain help to give insights to 

the behavior and limits of the physical system. Solution approaches and conclusion 

can be drawn from these insights. 

5. The continuous design and the consequent evaluation process cannot guarantee 

proper perfomance in a DSP-based application 

6. The work illustrates a reduced order direct discrete modelling approach of the LC 

plant. 

7. The real system with all inherent delays and implemented filters has to be taken into 

account for the simulation results to be meaningfull. 

8. The timing and frequency of the sampling highly influence the performance, the 

limits, and consequently the feasibility of the envisaged system. 

9. Inductive components scale down in power poorly. In the low-voltage test bench, 

the inductive components become much more resistive in comparison to the high-

power original setup. 

10. The harmonic impedance seen from the grid (dynamic stiffness) is the most 

important metric for design of control and evaluation of performance. This statement 

is especially true for active damping. This metric further provides information about 

passivity. 

11. Notch-filter based active damping performs bad. This is very apperent in the 

dynamic stiffness. The state information is missing and thus very low to no dynamic 

stiffness is achieved at the resonance. 
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12. The active damping coefficient has to be chosen carefully. Too little values result in 

small impact. Whereas, too big damping coefficients yield to strong eigenvalue 

movement and thus destabalize the system. 

13. Proper discrete decoupling techniques are of the essence to handle the higher-order 

plant (compared to L-Filter) with high dynamic performance. 


